Math 220 – Homework 8

Due Friday 04/03 at the beginning of class

Total points: 171

PART A

Problems from the textbook:

• Section 4.3	problem	1(a)	$1(b)^{*}$	2(a)	4(a)	5(a)
	points	8	16	8	8	8

PART B

1. [30 points] Let $i \in \mathbb{Z}$ and $A_i = \{i - 1, i + 1\}$. Write the following sets in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcup_{i=1}^{5} A_{2i}$$

(b) $\bigcup_{i=1}^{250} A_{2i}$
(c) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1})$
(d) $\bigcup_{i=1}^{250} (A_i \cap A_{i+1})$
(e) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1})$
(f) $\bigcup_{i=1}^{250} (A_{2i-1} \cap A_{2i+1})$

- 2. [15 points] Repeat the previous problem for $A_i = [i 1, i + 1]$.
- 3. [15 points] Given $I = \{1, 2, 3, ..., 2018\}$. For each $i \in I$ define $B_i = \{i, i+1\}$. Write the following in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcap_{i \in I} B_i$$

(b)
$$\bigcap_{i=j}^{j+1} B_i$$

(c) If
$$1 \le j \le k \le 2018$$
, then $\bigcup_{i=j}^{k} B_i =$

4. Let $A = \{x, y, z, u, v\}, B = \{a, b, c, d\}$, and $C = \{5, 6, 7, 8, 9\}.$

(a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).

- (b) [9 points] Write out two functions with domain B and codomain C(represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
- 5. Let $f: \mathbb{Z} \to \mathbb{R}$ and let $g: \mathbb{Z} \to \mathbb{R}$ be defined by $f(n) = \cos(\pi n)$ and $g(n) = (-1)^n$.
 - (a) [5 points] Find ran(f) and ran(g) and represent your answers using roster notation. (No formal proofs are necessary).
 - (b) [5 points] Find graphs G_f and G_g and show that $G_f = G_g$.
- 6. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2018 4x. Prove that $\operatorname{ran} f = \mathbb{R}$.
- 7. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ranf = S.

8. Let $X = \{x \in \mathbb{R} | x \neq -5\}$ and $f: X \to \mathbb{R}$ be defined by $f(x) = \frac{3x-1}{x+5}$.

- (a) [5 points] Determine the range of f.
- (b) * [10 points] Prove that your answer for ran f is correct.