Math 220 - Homework 8

Due Friday 04/03 at the beginning of class

Total points: 171

PART A

Problems from the textbook:

- Section 4.3 | problem | $1(\mathrm{a})$ | $1(\mathrm{~b})^{*}$ | $2(\mathrm{a})$ | $4(\mathrm{a})$ | $5(\mathrm{a})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | points | 8 | 16 | 8 | 8 |

PART B

1. [30 points] Let $i \in \mathbb{Z}$ and $A_{i}=\{i-1, i+1\}$. Write the following sets in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
(a) $\bigcup_{i=1}^{5} A_{2 i}$
(b) $\bigcup_{i=1}^{250} A_{2 i}$
(c) $\bigcup_{i=1}^{5}\left(A_{i} \cap A_{i+1}\right)$
(d) $\bigcup_{i=1}^{250}\left(A_{i} \cap A_{i+1}\right)$
(e) $\bigcup_{i=1}^{5}\left(A_{2 i-1} \cap A_{2 i+1}\right)$
(f) $\bigcup_{i=1}^{250}\left(A_{2 i-1} \cap A_{2 i+1}\right)$
2. [15 points] Repeat the previous problem for $A_{i}=[i-1, i+1]$.
3. [15 points] Given $I=\{1,2,3, \ldots, 2018\}$. For each $i \in I$ define $B_{i}=\{i, i+1\}$. Write the following in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
(a) $\bigcap_{i \in I} B_{i}$
(b) $\bigcap_{i=j}^{j+1} B_{i}$
(c) If $1 \leq j \leq k \leq 2018$, then $\bigcup_{i=j}^{k} B_{i}=$
4. Let $A=\{x, y, z, u, v\}, B=\{a, b, c, d\}$, and $C=\{5,6,7,8,9\}$.
(a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
(b) [9 points] Write out two functions with domain B and codomain C (represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
5. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ and let $g: \mathbb{Z} \rightarrow \mathbb{R}$ be defined by $f(n)=\cos (\pi n)$ and $g(n)=(-1)^{n}$.
(a) [5 points] Find $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ and represent your answers using roster notation. (No formal proofs are necessary).
(b) [5 points] Find graphs G_{f} and G_{g} and show that $G_{f}=G_{g}$.
6. * [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2018-4 x$. Prove that $\operatorname{ran} f=\mathbb{R}$.
7. * [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{4}$ and $S=\{y \in \mathbb{R} \mid y \geq 0\}$. Prove that ran $f=S$.
8. Let $X=\{x \in \mathbb{R} \mid x \neq-5\}$ and $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{3 x-1}{x+5}$.
(a) [5 points] Determine the range of f.
(b) * [10 points] Prove that your answer for $\operatorname{ran} f$ is correct.
