Math 220-Homework 9

Due Wednesday $11 / 11$ at the beginning of class

PART A

Problems from the textbook:

- Section 5.3 \# 1b, 6 (b,c,d,e (in part (e) state, prove or disprove the converse of parts $3 \& 4$ of Proposition 5.3 .3 only))

PART B

1. Let $a, b, c \in \mathbf{Z}$. Determine the truth or falsehood of the following statements.
(a) $\operatorname{gcd}(a, 0)=a$.
(b) Let a and b be not both zero. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)$.
(c) The set $\mathbf{Z}-\mathbf{Z}^{+}$of integers is closed with respect to multiplication.
(d) $0 \mid b$ only if $b=0$.
(e) If $a \mid c$ and $b \mid c$, then $a b \mid c$.
(f) If $a \mid b$ and $b \mid a$ then $a=b$.
2. Prove by induction that for every positive integer n the following statements hold:
(a) $2+6+10+\ldots+(4 n-2)=2 n^{2}$.
(b) $n^{3}+2 n$ is divisible by 3 . (Hint: $(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$)
(c) $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{(n+1)(n+2)}=\frac{n}{2(n+2)}$.
(d) $3 \mid\left(2^{2 n}-1\right)$.
(e) 5 is a factor of $7^{n}-2^{n}$.
3. (a) Use the Euclidean Algorithm to determine gcd $(374,946)$.
(b) Find integers x and y such that $374 x+946 y=\operatorname{gcd}(374,946)$.
