Math 220 - Homework 9

Due Thursday 11/08 at the beginning of class

Total points: 224
PART A
Problems from the textbook:

- Section 4.3 | problem | $1(\mathrm{a})$ | $2(\mathrm{a})$ | $4(\mathrm{a})$ | $5(\mathrm{a})$ |
| :---: | :---: | :---: | :---: | :---: |
| points | 8 | 8 | 8 | 8 |
- Section 5.2 | problem | $1(\mathrm{a})$ | $1(\mathrm{~b})$ | 2 |
| :---: | :---: | :---: | :---: |
| | points | 8 | 10 |

PART B

1. [10 points] For a real number r, define S_{r} to be the interval $[r-1, r+2]$. Let $A=\{1,3,4\}$. Write the sets $\bigcup_{\alpha \in A} S_{\alpha}$ and $\bigcap_{\alpha \in A} S_{\alpha}$ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
2. [10 points] Let $K=\{a, b, c\}, L=\{b, d, e\}, M=\{b, e, f\}$ and $S=\{K, L, M\}$. Write the sets $\bigcup_{X \in S} X$ and $\bigcap_{X \in S} X$ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
3. [30 points] Let $i \in \mathbb{Z}$ and $A_{i}=\{i-1, i+1\}$. Write the following sets in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
(a) $\bigcup_{i=1}^{5} A_{2 i}$
(b) $\bigcup_{i=1}^{250} A_{2 i}$
(c) $\bigcup_{i=1}^{5}\left(A_{i} \cap A_{i+1}\right)$
(d) $\bigcup_{i=1}^{250}\left(A_{i} \cap A_{i+1}\right)$
(e) $\bigcup_{i=1}^{5}\left(A_{2 i-1} \cap A_{2 i+1}\right)$
(f) $\bigcup_{i=1}^{250}\left(A_{2 i-1} \cap A_{2 i+1}\right)$
4. [15 points] Repeat the previous problem for $A_{i}=[i-1, i+1]$.
5. [15 points] Given $I=\{1,2,3, \ldots, 2018\}$. For each $i \in I$ define $B_{i}=\{i, i+1\}$. Write the following in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
(a) $\bigcap_{i \in I} B_{i}$
(b) $\bigcap_{i=j}^{j+1} B_{i}$
(c) $\bigcup_{i=j}^{k} B_{i}$, where $1 \leq j<k \leq 2018$
6. Let $A=\{x, y, z, u, v\}, B=\{a, b, c, d\}$, and $C=\{5,6,7,8,9\}$.
(a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
(b) [9 points] Write out two functions with domain B and codomain C (represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
7. * [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2018-4 x$. Prove that $\operatorname{ran} f=\mathbb{R}$.
8. * [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{4}$ and $S=\{y \in \mathbb{R} \mid y \geq 0\}$. Prove that ran $f=S$.
9. Let $X=\{x \in \mathbb{R} \mid x \neq-5\}$ and $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{3 x-1}{x+5}$.
(a) [5 points] Determine the range of f.
(b) * [10 points] Prove that your answer for $\operatorname{ran} f$ is correct.
10. Express each of the following functions as a composition $f=g \circ h$. Be sure to give appropriate sets A, B, and C such that $h: A \rightarrow B$ and $g: B \rightarrow C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
(a) [7 points] $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt[3]{e^{x^{3}}+8}$
(b) $[7$ points $] f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\ln \left(x^{2}+1\right)$
(c) $[7$ points $] f: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $f(x)=\sin (\pi x+1)$
11. *[10 points] Determine whether the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=\left\{\begin{array}{ll}2 n, & \text { if } \\ n \in \mathbb{E} \\ -n+22, & \text { if }\end{array} \quad n \in \mathbb{O}\right.$ is surjective. Give a formal proof of your answer.
