Math 220 - Homework 9

Due Thursday 11/08 at the beginning of class

Total points: 224

PART A

Problems from the textbook:

• Section 4.3	problem	1(a)	2(a)	4(a)	5(a)
	points	8	8	8	8

• Section 5.2	problem	1(a)	1(b)	2
	points	8	10	10

PART B

- 1. [10 points] For a real number r, define S_r to be the interval [r-1,r+2]. Let $A=\{1,3,4\}$. Write the sets $\bigcup_{\alpha\in A}S_{\alpha}$ and $\bigcap_{\alpha\in A}S_{\alpha}$ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
- 2. [10 points] Let $K = \{a, b, c\}$, $L = \{b, d, e\}$, $M = \{b, e, f\}$ and $S = \{K, L, M\}$. Write the sets $\bigcup_{X \in S} X$ and $\bigcap_{X \in S} X$ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer
- 3. [30 points] Let $i \in \mathbb{Z}$ and $A_i = \{i-1, i+1\}$. Write the following sets in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcup_{i=1}^{5} A_{2i}$$
 (b) $\bigcup_{i=1}^{250} A_{2i}$ (c) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1})$ (d) $\bigcup_{i=1}^{250} (A_i \cap A_{i+1})$ (e) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1})$

(f) $\bigcup_{i=1}^{250} (A_{2i-1} \cap A_{2i+1})$

- 4. [15 points] Repeat the previous problem for $A_i = [i-1, i+1]$.
- 5. [15 points] Given $I = \{1, 2, 3, ..., 2018\}$. For each $i \in I$ define $B_i = \{i, i+1\}$. Write the following in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcap_{i \in I} B_i$$
 (b) $\bigcap_{i=j}^{j+1} B_i$ (c) $\bigcup_{i=j}^k B_i$, where $1 \le j < k \le 2018$

- 6. Let $A = \{x, y, z, u, v\}, B = \{a, b, c, d\}, \text{ and } C = \{5, 6, 7, 8, 9\}.$
 - (a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
 - (b) [9 points] Write out two functions with domain B and codomain C (represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
- 7. * [10 points] Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2018 4x. Prove that ran $f = \mathbb{R}$.

- 8. * [10 points] Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ran f = S.
- 9. Let $X = \{x \in \mathbb{R} | x \neq -5\}$ and $f: X \to \mathbb{R}$ be defined by $f(x) = \frac{3x 1}{x + 5}$.
 - (a) [5 points] Determine the range of f.
 - (b) * [10 points] Prove that your answer for ran f is correct.
- 10. Express each of the following functions as a composition $f = g \circ h$. Be sure to give appropriate sets A, B, and C such that $h: A \to B$ and $g: B \to C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
 - (a) [7 points] $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt[3]{e^{x^3} + 8}$
 - (b) [7 points] $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \ln(x^2 + 1)$
 - (c) [7 points] $f: \mathbb{Z} \to \mathbb{R}$ defined by $f(x) = \sin(\pi x + 1)$
- 11. * [10 points] Determine whether the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = \begin{cases} 2n, & \text{if } n \in \mathbb{E} \\ -n+22, & \text{if } n \in \mathbb{O} \end{cases}$ is surjective. Give a formal proof of your answer.