Math 220 - Homework 9

Due Tuesday $04 / 10$ at the beginning of class

PART A

Problems from the textbook:

- Section 5.2 | problem | $1(\mathrm{a})$ | $1(\mathrm{~b})$ | 2 |
| :---: | :---: | :---: | :---: |
| | points | 8 | 10 |
- Section 5.3 | problem | $1(\mathrm{~d})^{*}$ | $3(\mathrm{a})^{*}$ | 6^{*} |
| :---: | :---: | :---: | :---: |
| | points | 16 | 16 |
- Section $5.4 \# 1(\mathrm{~b})^{*}[24$ points]

PART B

1. Express each of the following functions as a composition $f=g \circ h$. Be sure to give appropriate sets A, B, and C such that $h: A \rightarrow B$ and $g: B \rightarrow C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
(a) [7 points] $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt[3]{e^{x^{3}}+8}$
(b) $[7$ points $] f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\ln \left(x^{2}+1\right)$
(c) $[7$ points $] f: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $f(x)=\sin (\pi x+1)$
2. Let $A=\{-1,0,1,2,3\}, B=\{a, b, c, d\}$, and $C=\{1,2,3,4,5\}$. Using graph give examples of functions with the following properties. If such function does not exist, explain why.
(a) [3 points] an injective function with domain A and codomain B;
(b) [3 points] a surjective function with domain A and codomain B;
(c) [3 points] a surjective function with domain B and codomain C;
(d) [3 points] an injective function with domain C and codomain B;
(e) [3 points] an bijective function with domain A and codomain C;
(f) [3 points] an bijective function with domain A and codomain B.
3. * Determine whether the following function is injection. Give a formal proof of your answer.
(a) [6 points] $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=16 x^{16}-14 x^{14}-2 x^{2}+1$
(b) [10 points] $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=\left\{\begin{array}{lll}n+2018, & \text { if } & n \in \mathbb{E} \\ -n+2018, & \text { if } & n \in \mathbb{O}\end{array}\right.$
4. * [10 points $]$ Determine whether the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=\left\{\begin{array}{ll}2 n, & \text { if } \quad n \in \mathbb{E} \\ -n+22, & \text { if } \quad n \in \mathbb{O}\end{array}\right.$ is surjective. Give a formal proof of your answer.
5. [10 points] The functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x+1$ and $g(x)=3 x-5$ are bijective. Determine the inverse function of $g \circ f^{-1}$.
6. [10 points] Let $a, b \in \mathbb{R}-\{0\}$ and let functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=a x+b, \quad g(x)=x+\frac{b}{a}
$$

Compute the inverse function of $g \circ f^{-1}$.

