Inverse Laplace transform of rational functions using Partial Fraction Decomposition

Using the Laplace transform for solving linear non-homogeneous differential equation with constant coefficients and the right-hand side $g(t)$ of the form
$h(t) e^{\alpha t} \cos \beta t$ or $h(t) e^{\alpha t} \sin \beta t$,
where $h(t)$ is a polynomial, one needs on certain step to find the inverse Laplace transform of rational functions $\frac{P(s)}{Q(s)}$,
where $P(s)$ and $Q(s)$ are polynomials with $\operatorname{deg} P(s)<\operatorname{deg} Q(s)$.

Inverse Laplace transform of rational functions using Partial Fraction Decomposition

The latter can be done by means of the partial fraction decomposition that you studied in Calculus 2:

One factors the denominator $Q(s)$ as much as possible, i.e. into linear (may be repeated) and quadratic (may be repeated) factors:
each linear factor correspond to a real root of $Q(s)$ and each quadratic factor correspond to a pair of complex conjugate roots of $Q(s)$.

Each factor in the decomposition of $Q(s)$ gives a contribution of certain type to the partial fraction decomposition of $\frac{P(s)}{Q(s)}$. Below we list these contributions depending on the type of the factor and identify the inverse Laplace transform of these contributions:

Case 1 A non-repeated linear factor $(s-a)$ of $Q(s)$ (corresponding to the root a of $Q(s)$ of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\}=A e^{a t} ;$

Case 2 A repeated linear factor $(s-a)^{m}$ of $Q(s)$ (corresponding to the root a of $Q(s)$ of multiplicity m) gives a contribution which is a sum of terms of the form $\frac{A_{i}}{(s-a)^{i}}, 1 \leq i \leq m$.
Then $\mathcal{L}^{-1}\left\{\frac{A_{i}}{(s-a)^{i}}\right\}=\frac{A_{i}}{(i-1)!} t^{i-1} e^{a t}$;

Case 3 A non-repeated quadratic factor $(s-\alpha)^{2}+\beta^{2}$ of $Q(s)$ (corresponding to the pair of complex conjugate roots $\alpha \pm i \beta$ of multiplicity 1) gives a contribution of the form

$$
C s+D
$$

$$
\overline{(s-\alpha)^{2}+\beta^{2}}
$$

It is more convenient here to represent it in the following way:

$$
\begin{aligned}
& \frac{C s+D}{(s-\alpha)^{2}+\beta^{2}}=\frac{A(s-\alpha)+B \beta}{(s-\alpha)^{2}+\beta^{2}} \text {. Then } \\
& \mathcal{L}^{-1}\left\{\frac{A(s-\alpha)+B \beta}{(s-\alpha)^{2}+\beta^{2}}\right\}=A e^{\alpha t} \cos \beta t+B e^{\alpha t} \sin \beta t
\end{aligned}
$$

Case 4 A repeated quadratic factor $\left((s-\alpha)^{2}+\beta^{2}\right)^{m}$ of $Q(s)$ (corresponding to the pair of complex conjugate roots $\alpha \pm i \beta$ of multiplicity m) gives a contribution which is a sum of terms of the form

$$
\frac{C_{i} s+D_{i}}{\left((s-\alpha)^{2}+\beta^{2}\right)^{i}}=\frac{A_{i}(s-\alpha)+B_{i} \beta}{\left((s-\alpha)^{2}+\beta^{2}\right)^{i}},
$$

where $1 \leq i \leq m$.
The calculation of the inverse Laplace transform in this case is more involved. It can be done as a combination of the property of the derivative of Laplace transform and the notion of convolution that will be discussed in section 6.6.

