Homework Assignment 9 in Differential Equations, MATH308

due April 18, 2012

Sections covered 7.5(partially)-7.6

1. Solve the following initial value problem

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}+x_{3} \\
& x_{2}^{\prime}=x_{1}+x_{3} \\
& x_{3}^{\prime}=x_{1}+x_{2}
\end{aligned}
$$

subject to $x_{1}(0)=-1, \quad x_{2}(0)=4, \quad x_{3}(0)=0$.
2. Find the fundamental matrix and the general solution for the following system of equations:
(a) $\begin{aligned} x_{1}^{\prime} & =6 x_{1}-x_{2} \\ x_{2}^{\prime} & =5 x_{1}+2 x_{2}\end{aligned}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ccc}1 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right) \mathbf{x}$
3. Solve the following initial value problem
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-3 & -1 \\ 2 & -1\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{-1}{1}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ccc}1 & -12 & -14 \\ 1 & 2 & -3 \\ 1 & 1 & -2\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}4 \\ 6 \\ -7\end{array}\right)$
4. (bonus -20pts) Given the system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ where

$$
A=\left(\begin{array}{cc}
\alpha & 1 \\
-1 & \alpha
\end{array}\right) .
$$

Here α is a real parameter.
(a) Determine the eigenvalues of A.
(b) Find the initial values of α where the qualitative nature of the phase portrait of the system changes. What type of equilibrium point is the origin for each α ?
(c) Sketch the phase portrait for $\alpha=0, \alpha=1$ and $\alpha=-1$.

