11.5: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse. or Tr = a.yg.
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The most general second-degree equation in three variables x,y and z:
Az? + By? + C22 + azy + bxz + cyz + dyx + doy + daz + E = 0, (1)

where A, B, C.a,b,c,dy,dy, dy, E are constants. The graph of (1) is a quadric surface.

Noteif A= B =C =a=>b=¢=0then (1) is a linear equation and its graph is a plane (this
is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

A + By? +C22+J =0 or Az>+By*+12=0.

In order to sketch the graph of a surface determine the curves of intersection of the surface
with planes parallel to the coordinate planes. The obtained in this way curves are called traces
or cross-sections of the surface.



Quadric surfaces can be classified into 5 categories:

cellipsoids; hyperboloids, cones, paraboloids, quadric cylinders. (shown in the
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table, see Appendix.)

The elements which characterize each of these categories:

1. Standard equation.

2. Traces (horizontal ( by planes z = k), yz-traces (by = 0) and zz-traces (by
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3. Intercepts (in some cases).
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To find the equation of a trace substitute the equation of the plane into the
equation of the surface (cf. Example 4, Section 1.1 notes). Note, in the examples

a>p , bv0, (YO

below the constants a,b, and ¢ are assumed to be positive.
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TECHNIQUES FOR GRAPHING QUADRIC SURFACES

e Ellipsoid. Standard equation:
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EXAMPLE 1. Sketch the ellipsoid
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Solution
— Find intercepts:
x z-intercepts: if y = 2=0thenz = % ( 3 O, 0\
* y-intercepts: if z = 2 =0 theny = * 4 Co, ‘,‘_‘_Q,O)
* z-intercepts: f z =y =0then 2= * § (o , © ¥ S\
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* the zy-plane: plug in z = 0 and get ll + 4
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The solution is posted in key for Quiz 3!
e Hyperboloids: There are two types:

— Hyperboloid of one sheet.
Standard equation:
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EXAMPLE 2. Sketch the hyperboloid of one sheet
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Hyperboloid of two sheets.

Standard equation: ) ) )
a b2 2
EXAMPLE 3. Sketch the hyperboloid of two sheet
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Solution Find z-intercepts: if x =y = 0 then z =

Plane Trace
z =12
r=1>0

The solution is posted in key for Quiz 3!
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e Elliptic Cones. Standard equation:

If a = b = ¢ then we say that we have a circular cone.

EXAMPLE 4. Sketch the elliptic cone
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e Paraboloids There are two types:

— FElliptic paraboloid. Standard equation:
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EXAMPLE 5. Sketch the elliptic paraboloid
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— Hyperbolic paraboloid. Standard equation:
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EXAMPLE 6. Sketch the hyperbolic paraboloid

X SR
Plane Trace

z= 2 2 T

X -Y =4 h'jper‘w\q_ }

z=—1 )‘1'71 =-4 ‘\\_.H)e\' bola_ ﬂ/
_ [

U 2= -V pacabolo- |

y=0 2T X-L rara.'.orq_ Al




The solution is posted in key for Quiz 3!

e Quadric cylinders: There are three types:

Elliptic cylinder:
— Standard equation:
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EXAMPLE 7.

Sketch elliptic cylin-
der
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Hyperbolic cylinder:

— Standard equation:

9 9
v
a b2
EXAMPLE 8.
Sketch hyperbolic
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Parabolic cylinder:

— Standard equation:

y = az’
EXAMPLE 9.
Sketch parabolic
cylinder
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CONCLUSION

A 2 2 22
\/ Ellipsoid {1_3 1 b_é + C_g 1
_ ¢y z
Hyperboloid of one sheet | -+ 5 ——5=1
a b2 2
2 2 2
Hyperboloid of two sheets —— -5 t5= 1
7 zb 7
VA ¢y z
\/ Elliptic Cones —+ 5=
/ 2’ 39 :
\/| Elliptic paraboloid —+ 5=
a bg C
T z
Hyperbolic paraboloid — — y_ﬂ = —
a bg C
.. . T Yy
/Flliptic cylind Z a7 1
7 Elliptic cylinder {13 + bf’é
T
Hyperbolic cylinder — — g 1
S— a? I
Parabolic cylinder y = ax”




TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES
EXAMPLE 10. Deseribe and sketch the surface z g (z +4)* + (y — 2)2 + 5.




Note that replacing a variable by its negative in the eguation of a surface
causes that surface to be reflected about a coordinate plane.

EXAMPLE 11. Identify and sketch the surface.
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EXAMPLE 12. Classify and sketch the surface

24yt tz—4r—6y+13=0.
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