11.5: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse.

• Parabola:

or

x5= k

Intercepts: $(\pm a, 0) \& (0, \pm b)$

Title: Jan 28-9:07 AM (1 of 15)

The most general second-degree equation in three variables x, y and z:

$$Ax^{2} + By^{2} + Cz^{2} + axy + bxz + cyz + d_{1}x + d_{2}y + d_{3}z + E = 0,$$
(1)

where $A, B, C, a, b, c, d_1, d_2, d_3, E$ are constants. The graph of (1) is a quadric surface.

Note if A = B = C = a = b = c = 0 then (1) is a linear equation and its graph is a plane (this is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 or $Ax^2 + By^2 + Iz = 0$.

In order to sketch the graph of a surface determine the curves of intersection of the surface with planes parallel to the coordinate planes. The obtained in this way curves are called **traces** or **cross-sections** of the surface.

Title: Jan 28-9:10 AM (2 of 15)

Quadric surfaces can be classified into 5 categories:

ellipsoids, hyperboloids, cones, paraboloids, quadric cylinders. (shown in the table, see Appendix.)

The elements which characterize each of these categories:

- 1. Standard equation.
- 2. Traces (horizontal (by planes z = k), yz-traces (by x = 0) and xz-traces (by y = 0).
- 3. Intercepts (in some cases).

To find the equation of a trace substitute the equation of the plane into the equation of the surface (cf. Example 4, Section 1.1 notes). Note, in the examples

below the constants a, b, and c are assumed to be positive.

TECHNIQUES FOR GRAPHING QUADRIC SURFACES

• Ellipsoid. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Note if a = b = c we have a **sphere**

EXAMPLE 1. Sketch the ellipsoid

$$\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1$$

Solution

- Find intercepts:

* x-intercepts: if
$$y = z = 0$$
 then $x = \pm 3$

* y-intercepts: if
$$x = z = 0$$
 then $y = \pm 4$ (0, ± 4.0)

* z-intercepts: if
$$x = y = 0$$
 then $z = \pm 5$ (o, o, ± 5)

- Obtain traces of:

$$x^2 + y^2$$

* the yz-plane: plug in
$$x = 0$$
 and get $\frac{y^2}{16} + \frac{z^2}{25}$

* the xz-plane: plug in y = 0 and get

$$\frac{x^2}{9} + \frac{2^2}{25} = 1$$

The solution is posted in key for Quiz 3!

- Hyperboloids: There are two types:
 - Hyperboloid of one sheet. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

EXAMPLE 2. Sketch the hyperboloid of one sheet

$$x^2 + y^2 - \frac{z^2}{9} = 1$$

Plane	Trace
z = 0	
$z=\pm 3$	
x = 0	
y = 0	

Title: Jan 28-9:12 AM (5 of 15)

The solution is posted in key for Quiz 3!

Standard equation:

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

EXAMPLE 3. Sketch the hyperboloid of two sheet

$$-x^2 - \frac{y^2}{9} + z^2 = 1$$

Solution Find z-intercepts: if x = y = 0 then z =

Plane	Trace
$z=\pm 2$	
x = 0	
y = 0	

Title: Jan 28-9:13 AM (6 of 15)

• Elliptic Cones. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

If a = b = c then we say that we have a *circular cone*.

EXAMPLE 4. Sketch the elliptic cone

$$z^2 = x^2 + \frac{y^2}{9}$$

Plane	Trace
$z = \pm 1$	$x^2 + \frac{y^2}{9} = 1$ ellipse
x = 0	$z^2 = \frac{y^2}{9} \Rightarrow z = \pm \frac{y}{3}$ two lines
y = 0	$z^2 = x^2 \Rightarrow z = \pm x$ two lines

Special cases:

$$2. \ z = \sqrt{x^2 + y}$$

1.
$$a = b$$
 circular cone
-2. $z = \sqrt{x^2 + y^2}$ $a = b = c \implies z^2 = x^2 + y^2$

- Paraboloids There are two types:
 - Elliptic paraboloid. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

EXAMPLE 5. Sketch the elliptic paraboloid

$$z = \frac{x^2}{4} + \frac{y^2}{9}$$
 > 0

Plane	Trace	
z = 1	$\frac{x^2}{4} + \frac{y^2}{9} = 1$	ellipse
x = 0	Z = Y2	parabola
y = 0	Z = 4	parabola

Title: Jan 28-9:14 AM (8 of 15)

- Hyperbolic paraboloid. Standard equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{a}$$

$$y^2 - k$$

If
$$z = k$$
 then $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{k}{c}$

EXAMPLE 6. Sketch the hyperbolic paraboloid

$$z^{ }= x^2 - y^2$$

Plane	Trace
z = 1	$x^2-y^2=1$ hyperbola
z = -1	x²-Y²=-1 hyperbola
x = 0	z = -y2 parabola
y = 0	z = x² parabola

Title: Jan 28-9:14 AM (9 of 15)

The solution is posted in key for Quiz 3!

• Quadric cylinders: There are three types:

Elliptic cylinder:

- Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

EXAMPLE 7. Sketch elliptic cylinder

$$x^2 + \frac{y^2}{4} = 1$$

Hyperbolic cylinder:

- Standard equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

EXAMPLE 8. Sketch hyperbolic cylinder

$$x^2 - y^2 = 1$$

Parabolic cylinder:

- Standard equation:

$$y = ax^2$$

EXAMPLE 9. Sketch parabolic cylinder

$$y = -x^2$$

CONCLUSION

V	Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
	Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
	Hyperboloid of two sheets	$\left -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1 \right $
V	Elliptic Cones	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$
/	Elliptic paraboloid	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Hyperbolic paraboloid	$\frac{a^{2} + \overline{b^{2}} = \overline{c}}{x^{2}}$ $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = \frac{z}{c}$
V	Elliptic cylinder	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	Hyperbolic cylinder	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
	Parabolic cylinder	$y = ax^2$

Title: Jan 28-9:17 AM (11 of 15)

TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES

EXAMPLE 10. Describe and sketch the surface $z = (x+4)^2 + (y-2)^2 + 5$.

Title: Jan 28-9:17 AM (12 of 15)

Note that replacing a variable by its negative in the equation of a surface causes that surface to be reflected about a coordinate plane.

EXAMPLE 11. Identify and sketch the surface.

$$-S = \chi_s + \lambda_s$$

We know the graph

of $z = x^2 + y^2$

Title: Jan 28-9:17 AM (13 of 15)

Compare with

circular cone

Title: Jan 28-9:18 AM (14 of 15)

EXAMPLE 12. Classify and sketch the surface $x^2 + y^2 + z - 4x - 6y + 13 = 0.$ Complete square: $(a \pm b)^2 = a^2 \pm 2ab + b^2$ $\frac{x^{2}-4x+4-4+y^{2}-64+9-9+2}{(x-2)^{2}}+\frac{1}{2}+\frac{1}{2}=0$ $-\overline{z} = (x-2)^2 + (y-3)^2$ Compare to $z = x^2 + y^2$ circular parelshid vertex (2,3,0) 3

Title: Jan 28-9:18 AM (15 of 15)