All functions below are continuous on their domains.
$\iint_{D} f(x, y) d A$
Let D be a bounded region enclosed in a rectangular region
R. We define

$$
F(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \text { is in } D \\ 0 & \text { if }(x, y) \text { is in } R \text { but not in } D .\end{cases}
$$

If F is integrable over R, then we say F is integrable over D and we define the double integral of
over D by

$\iint f d A$
D
FACT: If $f(x, y) \geq 0$ and f is continuous on the region D then the volume V of the solid S that lies D ond under the

Title : Oct 17-8:44 PM (Page 1 of 11)

EXAMPLE 1. Evaluate the integral

$$
\iint_{D} \frac{\boldsymbol{n}_{\mathbf{l}} \mathbf{0}}{\sqrt{16-x^{2}-y^{2}}} \mathrm{~d} A
$$

where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 16\right\}$ by identifying it as a volume of a solid.

D

$$
\begin{aligned}
& \iint_{D}^{x} \sqrt{16-x^{2}-y^{2}} d A=\frac{1}{2}\binom{\text { Volume of ball }}{\text { With } R=4} \\
& =\frac{1}{2} \frac{4}{3} \pi R^{3}=\frac{2}{3} \pi 4^{3}=\frac{128 \pi}{3}
\end{aligned}
$$

Title : Oct 17-9:03 PM (Page 3 of 11)

THEOREM 3. If D is a region of type II s.t. $D=$
$\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$ then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \text { right curve }
$$

Title : Oct 17-9:07 PM (Page 4 of 11)

EXAMPLE 4. Evaluate $I=\iint_{D}(x+y) \mathrm{d} A$, where D is the region bounded by the lines $x=2, y=x$ and the hyperbola $x y=1$. Second Way (Use TYPE IT Region) $\begin{aligned} I & =\iint(x+y) d A= \\ & =\int_{\frac{1}{2}}^{2} \int_{\text {Peft curve }}^{2}(x+y) d x d y \end{aligned}$ left curve $x=\left\{\begin{array}{l}\frac{1}{y} \\ y\end{array}\right.$ $\frac{\frac{1}{2} \leqslant y \leq 1}{1 \leqslant y \leqslant 2}$ $\begin{aligned} & I=\int_{\frac{1}{2}}^{1} \int_{\frac{1}{y}}^{2}(x+y) d x d y+\iint_{1}^{2}(x+y) d x d y= \\ & =\left.\int_{\frac{1}{2}}^{1}\left(\frac{x^{2}}{2}+x y\right)\right\|_{x=\frac{1}{y}} ^{2} d y+\left.\int_{1}^{2}\left(\frac{x^{2}}{2}+x y\right)\right\|_{x=y} ^{2} d y= \\ & \quad=\ldots=\frac{9}{4} \end{aligned}$	

Title : Oct 17-9:09 PM (Page 5 of 11)

EXAMPLE 5. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $x=0, y=z, z=0$ in the first octant. $\boldsymbol{x} \geqslant 0, y \geqslant 0, z \geqslant 0$ Lid

$$
=\int_{0}^{1} \frac{y^{2}}{2} \int_{y=0}^{\sqrt{1-x^{2}}} d x=
$$

$$
=\frac{1}{2} \int_{3}^{1}\left(1-x^{2}\right) d x=\frac{1}{3}
$$

EXAMPLE 6. Evaluate the integral by reversing the order of integration:

$$
I=\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x .
$$

$$
\begin{aligned}
I & =\iint_{D} x^{3} \sin y^{3} d A= \\
& =\int_{0}^{1} \int_{0}^{\sqrt{y}} x^{3} \sin y^{3} d x d y=
\end{aligned}
$$

$$
=\int_{0}^{1} \sin y^{3}\left(\int_{0}^{\sqrt{y}} x^{3} d x\right) d y=
$$

$$
=\left.\int_{0}^{1} \sin y^{3} \cdot \frac{x^{4}}{4}\right|_{0} ^{\sqrt{y}} d y=\frac{1}{4} \int_{0}^{1} y^{2} \sin y^{3} d y=\binom{u=y^{3}}{d u=3 y^{2} d y}
$$

$=\left.\frac{1}{4} \cdot \frac{1}{3}\left(-\cos y^{3}\right)\right|_{0} ^{1}=\left(-\frac{1}{12}(\cos 1-\cos 0)=\right.$

$$
=\frac{1}{12}(1-\cos 1)
$$

Title : Oct 17-9:11 PM (Page 8 of 11)

EXAMPLE 8. Evaluate the double integral
where D is bounded by the lines

$$
y=1, y=2, x=-y, x=y
$$

$$
=\left.\int_{1}^{2} \frac{e^{\frac{x}{y}}}{\frac{1}{y}}\right|_{x=-y} ^{y} d y
$$

$$
\begin{aligned}
& =\int_{1}^{2} y\left(\left.e^{\frac{\pi}{5}}\right|_{x=-y} ^{y}\right) d y=\int_{1}^{2} y(\underbrace{e^{\frac{y}{y}}-e^{\frac{-y}{y}}}_{e^{--e^{-1}}}) \\
& =\left(e-e^{-1}\right) \int_{1}^{2} y d y=\frac{3}{2}\left[e-e^{-1}\right]
\end{aligned}
$$

$$
I=\int_{1}^{2} \int_{-y}^{y} e^{\frac{x}{5}} d x d y=
$$

- If α and β are real numbers then

$$
\iint_{D}(\alpha f(x, y)+\underbrace{\beta} g(x, y)) \mathrm{d} A=\alpha \iint_{D} f(x, y) \mathrm{d} A+\beta \iint_{D} g(x, y) \mathrm{d} A .
$$

- If we integrate the constant function $f(x, y)=1$ over D, we get area of D :

EXAMPLE 9. If $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 25\right\}$ then
I way $\iint_{0} d A=$ Area of circle $=\pi \cdot 5^{2}=25 \pi$
IT Way

$$
\begin{aligned}
A(D)=4 \int_{0}^{5} \int_{0}^{\sqrt{25-x^{2}}} d y d x=\underbrace{4}_{0} \sqrt[5]{\sqrt[5]{25-x^{2}} d x}=\ldots \\
=\ldots=\begin{array}{l}
\text { use trigonometric } \\
\text { substitution }
\end{array} \\
x=5 \sin \theta
\end{aligned}
$$

