14.8: STOKES’ THEOREM

Stokes” Theorem can be regarded as a 3-dimensional version of Green’s Theorem:
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Let S be an oriented surface with unit normal vector i and with the boundary curve C' (which

is a space curve). ﬁ l T ;1
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The orientation on .S induces the positive orientation of the boundary curve C: if you
walk in the positive direction around ' with your head pointing in the direction of n, then the
surface will always be on your left.

The positively oriented boundary curve of an oriented surface S is often written as 5.



Stokes’ Theorem: Let S be an oriented piece-wise-smooth surface that is bounded by a simple
closed, piecewise smooth boundary curve C' with positive orientation. Let ¥ be a vector field whos

components have continuous partial derivatives on an open region in R* that contains S. Then
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EXAMPLE 1. Find the work performed by the forced field F(z,y,z) = (328 4xy?, y?x) on a
particle that traverses the curve C' in the plane = = y consisting of 4 line segments from (0,0,0)

to (1,0,0), from (1,0,0) to (1,3,3), from (1,3,3) to (0,3,3), and from (0,3,3) to (0,0,0).
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EXAMPLE 2. Verify Stokes” Theorem [ [ curlF - dS = fasﬁ - dF for the vector field F =
(3y,4z,—6x) and the paraboloid z = 9 — x* — y? that lies above the plane z = =7 and oriented

upward. Be sure to check and explain the orientations.

Solution: Use the following steps:
eParametrize the boundary circle S and compute the line integral. \
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eParamtrize tl araboloid and coanute the surface integral:
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THEOREM 3. If F is a vectogfield defined on R? whose component functions have continuous

partial derivatives and curlF =°, then F is a conservative vector field.
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SUMMARY: Let F(z,y,z) = P(z,y,2)i+ Q(z,y, 2)j+ R(x,y, )k be a continuous vector field

in R3.
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