Section 1.1: Vectors

Quantities that we measure that have magnitude but not direction are called scalars.

DEFINITION 1. A wector is a quantity that has both magnitude and direction. A 2-dimensional vector

is an ordered pair a = (ay,az) . The numbers a; and az are called the components of the vector a.

- 3 A
a‘—<al\‘az-7 a____—_
T A '
o '
]
!
— 0 y w4
a‘ X
Typical notation to designate a vector is a boldfaced character or a character with and arrow on it
(ie. a or @).



DEFINITION 2. Given the points A(aj,a2) and B(by,b2), the vector a with representation ﬁ 18

AB = (by —ay, by —ag)— 5 —-A

The point A here is initial point and B is terminal one.
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A vector with the initial point located at the origin is called the position vector (or we say that .

vector is in standard position).
Vectors are equal if they have the same length and direction (same slope).
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EXAMPLE 3. Graph the vector with initial point A(1, -2) and terminal point B(2,1). Find the compo-

nents of AB and BA. A—?b_-_- B’ A=(2||)_<|‘°2)=
1 = (2-1,1-(-2))=¢1,37
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Vector operations
e Scalar Multiplication: If ¢ is a scalar and a = {ay,as), then

ca = cla,az) = (cay, caz).
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DEFINITION 4. Two vectors a and b are called parallel if b = ca with some scalar c.

If ¢ > 0 then a and ca have the same direction, if ¢ < 0 then a and ca have the opposite direction.



o Vector addition: If a = {(a1,az) and b = (b1, by) then

a—|—b:<a1—|—bl,az—|—b2),

Triangle Law Parallelogram Law

=)

2o \vo
b
fo

a + b is called the resultant vector

EXAMPLE 5. Let a = (—1,2) and b = (2.1,—0.5). Then 3a+ 2b =
33\"*212: 3~ 2O+ 2<2.1,-0, S =
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The magnitude or length of a vector a = (ay, az) is denoted by |a|,

aA=\nT, A2
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EXAMPLE 6. Find: |<3.—8>|,‘<g—?§>‘.m|

<3787z Q 5+ (-8) = |+ 64 -{73
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A unit vector is a vector with length one. Any vector can be made into a unit vector by dividing it

by its length. So, a unit vector in the direction of a is r‘“aq"o) g
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al and a unit vector u in its direction:

Any vector a can be fully represented by providing its

| izl | = 121-Q

EXAMPLE 7. Given a = (2,-1). Find

(a) a unit vector that has the same direction as a;
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The standard basis vectors are given by the unit vectors i = (1, 0) and  j=(0,1) along the

x and y directions, respectively. Using the basis vectors, one can represent any vector a = (a1, az) as
a=al+ as).
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EXAMPLE 8. Given a=2i—j, b= (5,—-2). Find a scalars s and t such that sa+th = —4j.= ~ 4<9 I
2 = -4
Sa+th =<1

S<2,-1y +t <5-ay = <0,~47
{25,-5Y + < St, L2y y = <0, =1
<25t5t, -5~ —2t> = <94y
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Applications: Quantities such as force, displacement or velocity that have direction as well as
magnitude are represented by vectors.

EXAMPLE 9. Ben walks due west on the deck of a shf at § mph. The ship is moving north at a speed
of 25 mph. Find the direction and speed of Ben relafve to theN\gurface of the water.
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EXAMPLE 18, HQwo forces Fy and Fy with magnitudes 14 pounds and 12 pounds act on an object at a

point P s gl Wi the resutant o as el a '« magnitude s divection
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EXAMPLE 11. An 60 pound weight hangs from two wires as shown. Find the tensions (forces) in both
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EXAMPLE 12. An airplane, flying due &st at an airspeed of 450mph, encounters a 50-mph wind
acting in the direction of E60°N (60° North of East). The airplane holds its compass heading due East

but, because of the wind, acquires a new ground speed (i.e. the magnitude of the resultant) and direction.
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