Section 2.5:Continuity

DEFINITION 1. A function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$. More implicitly: if f is continuous at a then

1. $f(a)$ is defined (i.e. a is in the domain of f);
2. $\lim _{x \rightarrow a} f(x)$ exists.
3. $\lim _{x \rightarrow a} f(x)=f(a)$.

A function is said to be continuous on the interval $[a, b]$ if it is continuous at each point in the interval.

Geometrically, if f is continuous at any point in an interval then its graph has no break in it (i.e. can be drawn without removing your pen from the paper).

REASONS FOR BEING DISCONTINUOUS:

$f(a)$ is not defined
(i.e. a is not in the domain of f)

$f(a)$ is defined and $\lim _{x \rightarrow a} f(x)$ exists,
but $\lim _{x \rightarrow a} f(x) \neq f(a)$

Classification of discontinuities:

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

Given $\lim _{x \rightarrow a} f(x)=L$, but $f(a)=b$

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \\
& \quad \text { Define } f(a)=L
\end{aligned}
$$

$$
\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)
$$

To remove define $f(a)=L$

EXAMPLE 2. Explain why each function is discontinuous at the given point:
(a) $f(x)=\frac{2 x}{x-3}, \quad x=3$
$f(3)$ is undefined
(b) $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-2 x+1}{x-1} & \text { if } & x \neq 1 \\ 5 & \text { if } & x=1,\end{array}\right.$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{x-1}=\lim _{x \rightarrow 1} x-1=0 \\
& 0=\lim _{x \rightarrow 1} f(x) \neq f(1)=5
\end{aligned}
$$

DEFINITION 3. A function f is continuous from the right at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

and f is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

REMARK 4. Functions continuous on an interval if it continuous at every number in the interval. At the end point of the interval we understand continuous to mean continuous from the right or continuous from the left.

EXAMPLE 5. Find the interval(s) where $f(x)=\sqrt{9-x^{2}}$ is continuous.

$$
\begin{array}{r}
\text { Domain of } f: 9-x^{2} \geqslant 0 \Rightarrow 9 \geqslant x^{2}, \begin{array}{r}
x^{2} \leqslant 9 \\
|x| \leqslant 3 \\
-3 \leqslant x \leqslant 3
\end{array} \\
\qquad f(x) \text { is cont, on }[-3,3] .
\end{array}
$$

EXAMPLE 6. Find the constant c that makes g continuous on $(-\infty, \infty)$:

$$
\begin{aligned}
& \text { g(x)=\{} \begin{array}{ll}
x^{2}-c^{2} & \text { if } x<4 \\
c x^{2}-1 & \text { if } x \geq 4
\end{array} \\
& x^{2}-c^{2}=c x^{2}-1 \\
& c x^{2}-1-x^{2}+c^{2}=0 \\
& x^{2}(c-1)+c^{2}-1=0 \\
& 16(c-1)+c^{2}-1=0 \\
& 16(c-1)+(c-1)(c+1)=0 \\
& -1)[16+(c+1)]=0 \\
& \text { 1) }(c+17)=0
\end{aligned}
$$

$(a-b)(a+b)=a^{2}-b^{2}$
EXAMPLE 7. For each of the following, find all discontinuities, classify them by using limits, give the continuity intervals) for the corresponding function. If the discontinuity is removable, find a function g that agrees with the given function except of the discontinuity point and is continuous at that point.
(a) $f(x)=\frac{x^{2}-9}{x^{4}-81}$

Domain of $f_{i} \quad x^{4} \neq 81 \Rightarrow x= \pm \frac{3}{2}$ discontinuities classify discount: $\lim _{x \rightarrow \pm 3} f(x)=\lim _{x \rightarrow \pm 3} \frac{x^{2}-9}{\left(x^{2}-9\right)\left(x^{2}+9\right)}=\frac{1}{3^{2}+9}=\frac{1}{18}$ $\Rightarrow x= \pm 3$ are removable discount. exists

Continuity interval $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$

$$
g(x)=\left\{\begin{array}{ll}
f(x), & x \neq \pm 3 \\
\frac{1}{18}, & x= \pm 3
\end{array}=\frac{1}{x^{2}+9}\right.
$$

(b) $f(x)=\frac{7}{x+12} \quad$ Domain $\quad \mathbf{X} \neq-12$
$\lim _{x \rightarrow-12} f(x)$ DNE, because if $x<-12 \Rightarrow x+12<0 \Rightarrow$

Similarly

$$
\left.\begin{array}{l}
\Rightarrow \lim _{x \rightarrow-12^{-}} f(x)=-\infty \\
\lim _{x \rightarrow-12^{+}} f(x)=+\infty
\end{array}\right\}
$$

Conclusion $x=-12$ is infinite discont.
Interval of contin: $(-\infty,-12) \cup(-12, \infty)$

Title : Jan 31-11:11 PM (Page 7 of 10)
(c) $f(x)=\left\{\begin{array}{lll}x^{2}+x & \text { if } & x<2 \\ 8-x & \text { if } & x>2 \\ 4 & \text { if } & x=2\end{array}\right.$

Domain is \mathbb{R}

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}+x=6 \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 8-x=8-2=6
\end{array}\right\} \Rightarrow \lim _{x \rightarrow 2} f(x)=6 \neq f(2)=4
$$

Cont. interval: $(-\infty, 2) \cup(2,+\infty)$

$$
g(x)= \begin{cases}x^{2}+x, & x<2 \\ 8-x, & x>2 \\ 6, & x=2\end{cases}
$$

Intermediate Value Theorem: If $f(x)$ is continous on the closed interval $[a, b]$ and N is any number strictly between $f(a)$ and $f(b)$, then there is a number $c, a<c<b$, so that $f(c)=N$.

If $f(x)$ is not cont.

EXAMPLE 8. If $f(x)=x^{5}-2 x^{3}+x^{2}+2$, show there a number c so that $f(c)=1$.
In other Show that the equation words,

$$
x^{5}-2 x^{3}+x^{2}+2=1
$$

has a real root.
$f(x)$ is cont. every where
To apply Int. Val. Theorem we have to find a \& b such that

$$
f(a)>1 \quad f(b)<1
$$

x	0	1	-1	-2
$f(x)$	2	2	4	-10

\& on(-2,-1) there is

\& a number C such that\end{aligned}\)

$$
f(c)=1 .
$$

EXAMPLE 9. Show that following equation has a solution (a root) between 1 and 2:

$$
3 x^{3}-2 x^{2}-2 x-5=0 .
$$

Define $f(x)=3 x^{3}-2 x^{2} \quad-2 x-5$. This function is continuous for all x.
Look for numbers a and b on $[1,2]$ such that
$f(a)>0$ and $f(b)<0$.

We have $f(1)=-6<0$ and $f(2)=7>0$.
Thus, by Intermidiate Value Theorem there is a number c such that $f(c)=0$, i.e. the given equation has a solution $x=c$ on the interval $[1,2]$,

