Section 3.1: Derivative

DEFINITION 1. The Derivative of a function f(x) at © = a is
*a flx) = fla) f(a+h)—f(a)_
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* Other common notations for the derivative of y = f(x) are [/, dc—lf(.r,) ‘g
o

& Tt follows from the definition that the derivative f’(a) measures: dx
r-o The slope of the tangent line to the graph of f(xz) at (a, f(a));
e The instantaneous rate of change of f(x) at © = a;

e The instantaneous velocity of the object at time at ¢ = a (if f(¢) is the position of an object at

time ).
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EXAMPLE 2. Given f(z) = % t -34S A

(a) Find the derivative of f(z) at x = —3) -
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e—tag=Llmethe—cguation of the tangent line of y = f(x) at x = —3.
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Question: Where does a derivative not exist for a function?
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DEFINITION 3. A function f(x) is said to be differentiable at v = a if f'(a) ezists.
EXAMPLE 4. Refer to the graph above to determine where f(x) is not differentiable.

£(x) is net differenHable of x=@, xe=b awd 2=c,




CONCLUSION: A function f(z) is NOT differentiable at z = a if

e f(x) is not continuous at = = a;
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e f(z) has a sharp turn at z = a (left and right derivatives are not the same ]
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e f(z) has a vertical tangent at z = a.
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lEHEOREM 5. If f is differentiable at a then f is continuous at a. \
Nott T f 1S conbhuowd %} £is oliffer,

The derivative as a function: If we replace a by x in Definition 1 we get:
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A new function g(z) = f/(z) is called the derivative of f. X3 o
-

EXAMPLE 6. Use the graph of f(z) below to sketch the graph of the derivative f'(z).
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EXAMPLE 7. Use the definition of the derivative to find f'(x) for f(z) = +/1+ 3z.
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f'(a) = }i%f(i'j : i(a) _ ,lll_r}nof(a + h; — f(a)

EXAMPLE 8. Each limit below represents the derivative offunctaon flz) at x = a. State f and a in
each case.
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