Section 3.1: Derivative

DEFINITION 1. The Derivative of a function f(x) at x = a is

Interpretation

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(x) - f(a)}{h}.$ We obtain a notations for the derivative of y = f(x) are f', $\frac{d}{dx}f(x)$. It follows from the definition that the derivative f'(a) measures:

- The slope of the tangent line to the graph of f(x) at (a, f(a));
- The instantaneous rate of change of f(x) at x = a;
- The instantaneous velocity of the object at time at t = a (if f(t) is the position of an object at

EXAMPLE 2. Given
$$f(x) = \frac{3}{x+5}$$
.

(a) Find the derivative of $f(x)$ at $x = -3$.

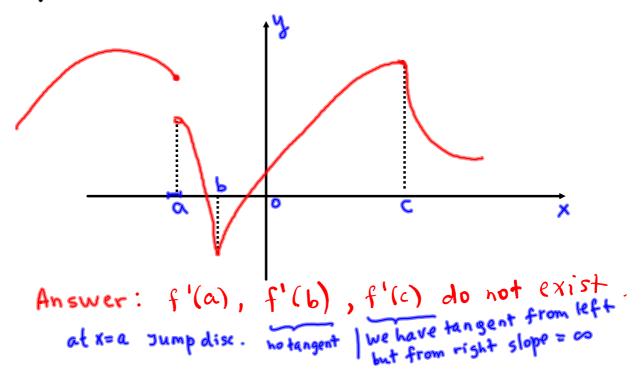
$$f'(-3) = \lim_{x \to -3} \frac{f(x) - f(-3)}{x - (-3)}$$

$$f'(-3) = \lim_{x \to -3} \frac{34}{x+5} - \frac{31}{2}$$

$$f'(-3) = \lim_{x \to -3} \frac{3}{x+5} = \frac{3}{2}$$

$$f'(-3) = \lim$$

Question: Where does a derivative not exist for a function?



DEFINITION 3. A function f(x) is said to be differentiable at x = a if f'(a) exists. EXAMPLE 4. Refer to the graph above to determine where f(x) is not differentiable.

f(x) is not differentiable at x=a, x=b, and x=c.

CONCLUSION: A function f(x) is NOT differentiable at x = a if

• f(x) is not continuous at x = a;

f(x) is not diff. at x=0

• f(x) has a sharp turn at x = a (left and right derivatives are not the same)

$$f(x) = |x-q|$$

$$f'(q) = \lim_{x \to q} \frac{f(x) - f(q)}{x - q} = \lim_{x \to q} \frac{|x-q| - 0}{x - q}$$

$$= \lim_{x \to q} \frac{|x-q|}{x - q} \quad DNE$$

• f(x) has a vertical tangent at x = a.

$$f(x) = \sqrt[3]{x}$$

$$y = \sqrt[3]{x}$$

$$f : \text{ not diff.}$$

$$\text{at } x = 0$$

$$f'(x) = \sqrt[4]{x}$$

$$f'(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x}}{x} = \lim_{x \to 0} \frac{1}{x^{3/3}} = 0$$

$$\text{tangent is vertical line}$$

THEOREM 5. If f is differentiable at a then f is continuous at a.

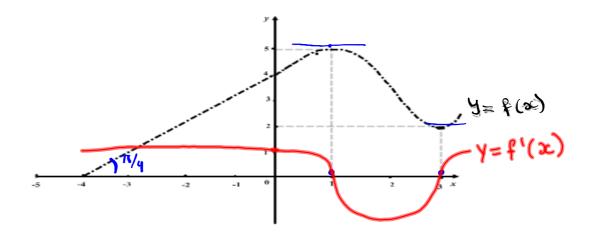
If f is continuous I f is differ, Note

The derivative as a function: If we replace a by x in Definition 1 we get:

A new function
$$g(x) = f'(x)$$
 is called the derivative of f .

A new function $g(x) = f'(x)$ is called the derivative of f .

EXAMPLE 6. Use the graph of f(x) below to sketch the graph of the derivative f'(x).



EXAMPLE 7. Use the definition of the derivative to find f'(x) for $f(x) = \sqrt{1+3x}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{1+3(x+h)} - \sqrt{1+3x}}{h} = \lim_{h \to 0} \frac{\sqrt{1+3x+3h} - \sqrt{1+3x}}{h}$$
Multiply by conjugate
$$f'(x) = \lim_{h \to 0} \frac{(\nabla - \nabla)(\sqrt{1+x})}{h} = \lim_{h \to 0} \frac{(x+3x+3h) - (x+3x)}{h} + \sqrt{1+3x}$$

$$f'(x) = \lim_{h \to 0} \frac{3k!}{\sqrt{(\sqrt{1+3x+3h} + \sqrt{1+3x})}} = \frac{3}{\sqrt{1+3x+3\cdot 0} + \sqrt{1+3x}}$$

$$f'(x) = \lim_{h \to 0} \frac{3k!}{\sqrt{(\sqrt{1+3x+3h} + \sqrt{1+3x})}} = \frac{3}{\sqrt{1+3x+3\cdot 0} + \sqrt{1+3x}}$$

$$f'(x) = \frac{3}{2\sqrt{1+3x}} \qquad x \neq -\frac{1}{3}$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

EXAMPLE 8. Each limit below represents the derivative of function f(x) at x = a. State f and a in each case.

each case.

(a)
$$\lim_{h\to 0} \frac{(3+h)^4 - 81}{h} = \lim_{h\to 0} \frac{(3+h)^4 - 3^4}{h} = f'(3)$$

Where $f(x) = x^4$

Note that
$$f(3+h) = (3+h)^4$$
, $f(3) = 3^4$
(b) $\lim_{x \to \frac{3\pi}{2}} \frac{\sin x + 1}{x - \frac{3\pi}{2}} = \lim_{x \to \frac{3\pi}{2}} \frac{\sin x - \sin \frac{3\pi}{2}}{x - \frac{3\pi}{2}} = f'(\frac{3\pi}{2})$
Where $f(x) = \text{Sio} \times$