Section 3.3:Rates Of Change In The Natural And Social Sciences.

Let s(t) be the position function of an object. Its rate of change with respect to time is the velocity:

$$v(t) = s'(t).$$

- If v(t) = 0 then the object is at rest; if v(t) > 0 then the object is moving in the positive direction (i.e. is advancing, up or right); if v(t) < 0 then the object is moving in the negative direction (i.e. is retreating, down or left);

Rectilinear motion (motion along a line): A particle representing some object is allowed to move in either direction along a line.

EXAMPLE 1. A particle is moving in a straight line. Its position is given by

$$s(t) = 4t^3 - 9t^2 + 6t + 2,$$

where t is measured in seconds and s is measured in meters.

(a) Find the velocity v(t) of the particle at time t.

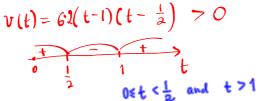
(b) When is the particle at rest?

Find t s.t.
$$v(t) = 0$$

$$|\lambda t^{2} - 18t + 6 = 0 \quad \left(x \frac{1}{6}\right)$$

$$|\lambda t^{2} - 3t + 1 = 0$$

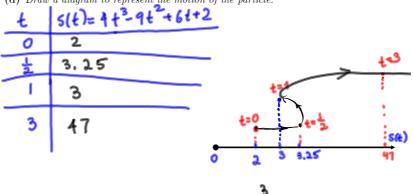
$$(t - 1) \left(t - \frac{1}{2}\right) = 0$$


$$|t_{1/2} = \frac{3 \pm \sqrt{3^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2}$$

$$|t = 1 \text{ or } t = \frac{1}{2}$$

$$|t_{1/2} = \frac{3 \pm \sqrt{3^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2}$$

$$|t = 1 \text{ or } t = \frac{1}{2}$$


(c) When is the particle moving in the positive direction?

(d) Draw a diagram to represent the motion of the particle.

(e) Find the total distance the particle traveled during the first three seconds. (Hint:Calculate each distance between turns and then add to get the total.)

between turns and then add to get the total.)

total distance =
$$\left|5\left(\frac{1}{2}\right) - 5(0)\right| + \left|5(4) - 5\left(\frac{1}{2}\right)\right| + \left|5(3) - 5(6)\right|$$

= $\left|3.25 - 2\right| + \left|3 - 3.25\right| + \left|47 - 3\right| = 45.5$ m

EXAMPLE 2. A ball is thrown vertically upward with a velocity of 80ft/s. Its height after t seconds is given by

$$s(t) = 80t - 16t^2.$$

What is the maximum height reached by the ball?
$$v'(t) = 0$$

 $v(t) = s'(t) = 80 - 32t$
 $80 - 32t = 0$
 $80 = 32t$
 $t = \frac{80}{32} = 2.5s$
 $5(2.5) = 80 \cdot 2.5 - 16 \cdot 2.5^2 = 100 ft$