4.2:Inverse Functions

DEFINITION 1. A function of domain X is said to be a one-to-one function if no two elements of X have the same image, i.e.

if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$.

Equivalently, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Horizontal line test:A function if one-to-one is and only if no horizontal line intersects its graph more once.

EXAMPLE 2. Are the following functions one-to-one?

EXAMPLE 3. Prove that
$$f(x) = \frac{x-3}{x+3}$$
 is one-to-one.

If $f(x_1) = f(x_2)$
 $x_1 = x_2$
 $x_2 = x_2$

EXAMPLE 4. How we can restrict the domain of $f(x) = \sin x$ to make it one-to-one?

DEFINITION 5. Let f be a one-to-one function with domain X and range Y. Then the inverse function f^{-1} has the domain Y and range X and is defined for any y in Y by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y.$$

REMARK 6. Reversing roles of x and y in the last formula we get:

$$f^{-1}(x) = y \Leftrightarrow f(y) = x.$$

REMARK 7. If y = f(x) is one-to-one function with the domain X and the range Y then

for every x in X $f^{-1}(f(x)) = f^{-1}(Y) = X$

for every x in Y $f(f^{-1}(x)) = \mathbf{f(y)} = \mathbf{f(y)}$

CAUTION: $f^{-1}(x)$ does NOT mean $\frac{1}{f(x)}$.

TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f:

- 1. Write y = f(x).
- 2. Solve this equation for \mathbf{x} in terms of y (if possible).
- 3. Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

EXAMPLE 8. (cf. Example 3) Find the inverse function of $f(x) = \frac{x-3}{x+3}$.

$$y = \frac{x-3}{x+3}$$

3
$$y = -\frac{3(x+1)}{x-1}$$
 $x = -\frac{3(y+1)}{y-1}$

$$\int_{-1}^{-1}(x) = -\frac{3(x+1)}{x-1}$$

Note		
	Domain_	Range
f	x = -3	Y ≠1
7-1	X+1	Y = -3
ecouse	•	= range f

EXAMPLE 9. Given $f(x) = x^2 + x$, $x \ge \frac{1}{2}$. Find the inverse function of f.

$$y = x^{2} + x$$

$$x^{2} + x - y = 0$$

Recall
$$ax^2 + bx + C = 0$$

 $x_{1/2} = -b \pm \sqrt{b^2 - 4aC}$

Inour case: a=1, b=1, c=-y

$$\chi_{1,2} = \frac{-1 \cancel{4} \sqrt{1+4y}}{2}$$

$$= \chi = \frac{1 + \sqrt{1 + 4y}}{2}$$

$$\gamma = \frac{1 + \sqrt{1 + 4x}}{2}$$

$$f^{-1}(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

FACT: The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

Remark If (a,b) belongs to the graph of $y=f(\pi)$ then (b,a) belongs to the graph of $y=f^{-1}(\pi)$ THEOREM 10. If f is a one-to-one differentiable function with inverse function $g = f^{-1}$ and $f'(g(a)) \neq 0$, then the inverse function is differentiable at a and

Proof.

$$f(f^{-1}(x)) = x$$

$$f(g(x)) = \frac{1}{f'(g(x))}$$

$$f(g(x)) = \frac{1}{f'(g(x))}$$

$$f(x) = \frac{1}{f'(g(x))}$$

EXAMPLE 11. Suppose that g is the inverse function of f and
$$f(4) = 5$$
, $f'(4) = 7$. Find $g'(5)$.

$$g'(5) = \frac{1}{f'(4)} = \frac{1}{f'(4)} = \frac{1}{7}$$

$$g(5) = f^{-1}(5) = 4$$

EXAMPLE 12. Suppose that g is inverse of f. Find g'(a) where

EXAMPLE 12. Suppose that g is inverse of f. Find
$$g'(a)$$
 where

(a) $f(x) = \sqrt{x^3 + x^2 + x + 1}$, $a = 2$

$$g'(a) = \frac{1}{f'(g(a))}$$

We don't know how to find formula for inverse.

Guess
$$f(a) = \sqrt{1+|f|+1} = 2$$

$$= 2$$

$$f(a) = \sqrt{1+|f|+1} = 2$$

$$= 3 = 2$$

Then
$$g'(a) = \frac{1}{f'(g(a))}$$

We don't know how to find formula for inverse.

To determine $g(a)$ we have to $g'(a) = 2$

$$f(a) = 2$$

$$f(a) = 2$$

$$f(a) = 3$$

$$f'(a) = 3 + 2 + 1$$

$$f'(a) = 3 + 2 + 2 + 2$$

$$f'(a) = 3 + 2$$

$$f'(a) =$$

$$f'(x) = g(x)$$

$$g'(a) = \frac{1}{f'(g(a))}$$

$$f(b) = a$$

$$f(x) = 8$$

$$guess$$

$$x = 1 = f(a) = 4 + 3 + 1 = 8$$

$$f(a) = 8 \Rightarrow 1 = f^{-1}(8) = g(8)$$

$$g'(8) = \frac{1}{f'(g(8))} = \frac{1}{f'(1)} = \frac{1}{0 + 3 + 3e^{3(x-1)}}$$

$$g'(8) = \frac{1}{f'(9(8))} = \frac{1}{f'(1)} = \frac{1}{0 + 3 + 3e^{3(x-1)}}$$