4.2:Inverse Functions

DEFINITION 1. A function of domain X is said to be a one-to-one function if no two elements of X

have the same image, i.e.

if x1 # x then f(x1) # f(z2).
Equivalently, if f(x1) = f(z2) then z1 = x2.

Horizontal line test:A function if one-to-one is and only if no horizontal line intersects its graph more
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once.

EXAMPLE 2. Are the following functions one-to-one?

@ h(z)=2*, wu(z)=|z|, w(z)=snz, Fz)=-2’+z+1
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EXAMPLE 3. Prove that f(x) = P

T4 f)= F&) = x=xa
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EXAMPLE 4. How we can restrict the domain of f(x) = sinz to make it one-to-one?




DEFINITION 5. Let f be a one-to-one function with domain X and range Y. Then the inverse function
£~ has the domain Y and range X and is defined for any y in Y by

7 y) =z & flz) =
REMARK 6. Reversing roles of & and y in the last formula we get:
FTH@) =y & fly) =2

REMARK 7. If y = f(z) is one-to-one function with the domain X and the range Y then
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TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f:
1. Write y = f(z).
2. Solve this equation for % in terms of y (if possible).

3. Interchange = and . The resulting equation is y = f~'(z).
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EXAMPLE 8. (¢f. Example3) Find the inverse function of f(z) = 3
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EXAMPLE 9. Given f(z)=2*>4+z, = > % Find the inverse function of f.
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FACT: The graph of f~! is obtained by reflecting the graph of f about the line y = .
H
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THEOREM 10. If f is a one-to-one differentiable function with inverse function g = f~! and f'(g(a)) # 0,
-

then the inverse function is differentiable at a and \
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EXAMPLE 11. Suppose that g is the inverse function of f and f( )=25, f'(4) =T7. Find ¢'(5).

g o= £ (%) £ (A = £7YS)
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EXAMPLE 12. Suppose that g is inverse of f. Find g'(a) where

g'ay= 2,
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(c) f(z)=4+3z+&=71 a=8.
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