Section 1.3: Vector functions

Parametric equations:

$$x = x(t), \quad y = y(t)$$

where the variable t is called a **parameter**. Each value of the parameter t defines a point that we can plot. As t varies over its domain we get a collection of points (x,y) = (x(t),y(t)) on the plane which is called the **parametric curve**.

Each parametric curve can be represented as the vector function:

$$\overrightarrow{r(t)} = \langle x(t), y(t) \rangle$$
.

Note that Parametric curves have a direction of motion given by increasing of parameter t. So, when sketching parametric curves we also include arrows that show the direction of motion.

Title: Jan 26-9:45 PM (Page 2 of 8)

EXAMPLE 2. Given
$$\mathbf{r}(t) = \langle t+1, t^2 \rangle$$
. (or $\chi(t) = t+1$, $\chi(t) = t+1$)

(b) Sketch the graph of $\mathbf{r}(t)$.

t	$\mathbf{r}(t)$	(x,y)	$\int y \int d$
-2	(-1,47	(-1,4)	\
-1	(0,1)	•	y /
0	<1,0>		x
1	< 2, 17	P	-10 4 ² 3
2	(3, 4)		

(c) Find the Cartesian equation of
$$\mathbf{r}(t)$$
 eliminating the parameter.

$$\begin{cases} x = t + 1 = 0 & t = x - 1 \\ y = t^{2} \end{cases}$$
 parabola

Title: Jan 26-9:51 PM (Page 3 of 8)

EXAMPLE 3. Find the Cartesian equation for
$$\mathbf{r}(t) = \cos t \mathbf{i} + \cos(2t) \mathbf{j}$$

$$x = cost$$

$$y = cos 2t = 2 cos^2 t - 1 = 2x^2 - 1$$

$$y = 2x^2 - 1$$
parabola

Sin² x + cos²
$$\lambda = 1$$

Sin² x + cos² $\lambda = 1$
Sin² x = 2 Sin x cos x
cos(2t) = cos²t - Sin²t
cos(2t) = 2 cos²t - 1
cos(2t) = 1 - 2 Sin²t

EXAMPLE 4. An object is moving in the xy-plane and its position after t seconds is given by $\mathbf{r}(t) = \langle 1 + t^2, 1 + 3t \rangle$.

- (a) Find the position of the object at time t = 0. (a) Find the position of the object at time <math>t = 0.
- (b) At what time does the object reach the point (10, 10). \rightarrow

$$F'(t) = \langle 1+4^2, 1+3t \rangle = \langle 10, 10 \rangle$$

 $\{1+4^2 = 10 = 2 + 2 = 9 \Rightarrow 4 = \frac{1}{2} = 3 \}$
 $\{1+3+3+0 = 10 \Rightarrow 3+0 \Rightarrow 4 = 3 \Rightarrow 1 = 3 \}$

(c) Does the object pass through the point (20, 20)?

$$1+f^2=20 \Rightarrow t=\pm\sqrt{19}$$
 impossible NO
 $1+3+=20 \Rightarrow t=19/3$

(d) Find an equation in x and y whose graph is the path of the object.

In other words, eliminate t.

$$\begin{cases} \lambda = 1 + 3 + = 3 & 3 + = 2 - 1 \\ \lambda = 1 + 3 + = 3 & 3 + = 2 - 1 \\ \lambda = 1 + 3 + = 3$$

$$x = 1 + \left(\frac{y-1}{3}\right)^2$$

$$x = 1 + \frac{(y-1)^2}{9}$$

A Vector equation of the line passing through the point (x_0, y_0) and parallel to the vector $\mathbf{v} = \langle a, b \rangle$ is given by

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{v},$

where $\mathbf{r_0} = \langle x_0, y_0 \rangle$.

The vector equation of the line can be rewritten in parametric form. Namely, we have

$$\langle x(t), y(t) \rangle = \mathbf{r} = \mathbf{r_0} + t\mathbf{v} =$$

$$= \langle x_0, y_0 \rangle + t \langle a, b \rangle = \langle x_0, y_0 \rangle + \langle ta, tb \rangle =$$

$$= \langle x_0 + ta, y_0 + tb \rangle.$$

This immediately yields that the parametric equations of the line passing through the point (x_0, y_0) and parallel to the vector $\mathbf{v} = \langle a, b \rangle$ are

Title: Jan 26-9:54 PM (Page 6 of 8)

Title: Jan 26-9:55 PM (Page 7 of 8)

EXAMPLE 6. Determine whether the lines $\mathbf{r}(t) = \langle 1+t, 1-3t \rangle$, $\mathbf{R}(s) = \langle 1+3s, 12+s \rangle$ are parallel, orthogonal or neither. If they are not parallel, find the intersection point. R(s)= (1+35,12+5) r(t)= <1+t, 1-3t> $\overrightarrow{V} = \langle 3_1 \rangle$ $\vec{V} = (1, -3)$ \vec{V} Note that $\vec{v} = \vec{V}^{\perp}$ $\vec{v} \perp \vec{V} = \vec{V}$ the lines are orthogonal find intersection point There are values of s and t <1+t, 1-3t> = <1+35, 12 +5> $\begin{cases} 1+t = 1+35 = 1 + 2 + 3 = 1 \\ 1-3t = 12+5 = 1 \end{cases} = 35 = -3.3$ 5+3-35=-11 10 5= -11 \vec{r} (-3.3) = \hat{r} (-1.1) = (1-33,1+3-3.3) = = <-2.3, lo.9)

Title: Jan 26-9:56 PM (Page 8 of 8)