4.2:Inverse Functions

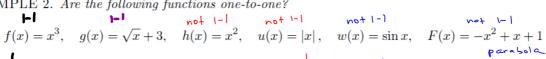
DEFINITION 1. A function of domain X is said to be a one-to-one function if no two elements of X have the same image, i.e.

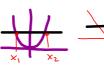
if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$.

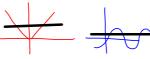
Equivalently, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Horizontal line test: A function if one-to-one is and only if no horizontal line intersects its graph more once.

EXAMPLE 2. Are the following functions one-to-one?







But f(x1) = f(x2)

EXAMPLE 3. Prove that $f(x) = \frac{x-3}{x+3}$ is one-to-one. on its domain D(x) = \(\times \) \(\times \)

If
$$f(x_1) = f(x_2)$$
 then show that $x_1 = x_2$.

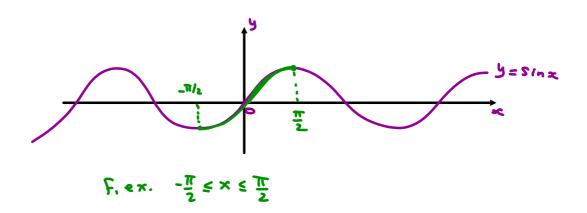
$$\frac{x_1 - 3}{x_1 + 3} = \frac{x_2 - 3}{x_2 + 3}$$

$$(x_1 - 3)(x_2 + 3) = (x_2 - 3)(x_1 + 3)$$

$$x_1 x_2 - 9(-3x_2 + 3x_1) = x_2 x_1 - 9(-3x_1 + 3x_2)$$

$$6x - 6x_2 = 0 \implies x_1 = x_2$$

EXAMPLE 4. How we can restrict the domain of $f(x) = \sin x$ to make it one-to-one?



DEFINITION 5. Let f be a one-to-one function with domain X and range Y. Then the <u>inverse</u> function f^{-1} has the domain Y and range X and is defined for any y in Y by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y.$$

REMARK 6. Reversing roles of x and y in the last formula we get:

$$f^{-1}(x) = y \Leftrightarrow f(y) = x.$$

t-, ot = t ot-,

REMARK 7. If y = f(x) is one-to-one function with the domain X and the range Y then

for every
$$x$$
 in X $f^{-1}(f(x)) = \mathbf{f}^{-1}(\mathbf{y}) = \mathbf{x}$

and

for every
$$x$$
 in Y $f(f^{-1}(x)) =$ **$f(y)$** = $f(y)$

CAUTION:
$$f^{-1}(x)$$
 does NOT mean $\frac{1}{f(x)}$.

TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f:

- 1. Write y = f(x).
- 2. Solve this equation for \mathbf{x} in terms of y (if possible).
- 3. Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

EXAMPLE 8. (cf. Example3) Find the inverse function of $f(x) = \frac{x-3}{x+3}$.

In addition, let us find domain and range for f, f'

	Domain	Range
£(x)	X + -3	ソ ≠ 1
र्ध	x + 1	9 = -3

EXAMPLE 9. Given $f(x) = x^2 + x$, $x \ge \frac{1}{2}$. Find the inverse function of f.

$$x_3 + x - \lambda = 0$$

$$\lambda = x_3 + x$$

Use
$$ax^{2}+bx+c=0$$

 $x_{1,2}=-b\pm\sqrt{b^{2}-4ac}$
We have
 $a=1, b=1, c=-y$

$$x_{1,2} = \frac{-1 \pm \sqrt{1 + 4y}}{2}$$

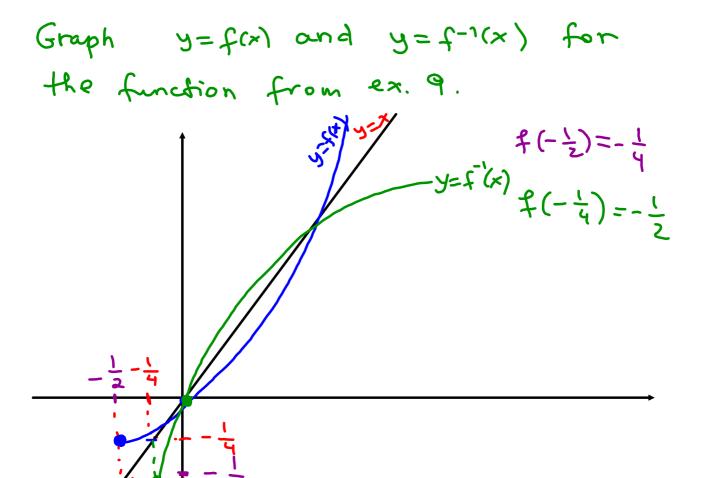
$$x = -\frac{1 + \sqrt{1 + 4y}}{2}$$

$$y = \sqrt{\frac{1 + \sqrt{1 + 4x}}{a}} = f^{-1}(x)$$

In addition, determine domain and range of $f_1f_1^{-1}$. $f_1^{-1}(x)$ is defined for all x S.t. 1+4x>0 $x>-\frac{1}{4}$

	Domain	Range
4	× >- 1/2	y ≥ - 1
₹ ⁻¹	x>, - 4	$y \geqslant -\frac{1}{2}$

FACT: The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.



If (a,b) belongs to the graph of y=fix)
then (b,a) belongs to the graph of y=fix)

THEOREM 10. If f is a one-to-one differentiable function with inverse function $g = f^{-1}$ and $f'(g(a)) \neq 0$, then the inverse function is differentiable at a and

$$g'(a) = \frac{1}{f'(g(a))}.$$

Proof.
$$f(f'(x)) = x$$

$$\frac{d}{dx}(f(g(x))) = \frac{d}{dx}(x)$$
Use Chain Rule: $f'(g(x))g'(x) = 1$

$$g'(x) = \frac{1}{f'(g(x))} = \int_{a}^{b} \int_{a}^{b} (a) = \frac{1}{f'(g(a))}$$

EXAMPLE 11. Suppose that g is the inverse function of f and
$$f(4) = 5$$
, $f'(4) = 7$. Find $g'(5)$.

$$g'(5) = \frac{1}{f'(g(5))}$$

$$q'(5) = \frac{1}{f'(g(5))}$$

$$q'(5) = \frac{1}{f'(g(5))}$$

EXAMPLE 12. Suppose that g is inverse of f. Find g'(a) where

(a)
$$f(x) = \sqrt{x^3 + x^2 + x + 1}$$
, $a = 2$
 $g = f^{-1}$ Find $g'(2)$.

 $g(2) = x$

So, $g(2) = 1$

Find $f'(3)$:

 $f'(x) = \frac{3x^2 + 2x + 1}{2\sqrt{x^3 + x^2 + x + 1}}$
 $g'(3) = \frac{1}{f'(3)}$
 $g'(3) = \frac{1}{3} = \frac{3}{3}$
 $g'(4) = \frac{1}{f'(4)}$
 $g'(4) = \frac{3}{3}$
 $g'(4) = \frac{3}{3}$

(b)
$$f(x) = \frac{2x-3}{x+3}$$
, $a = \frac{1}{2}$.

 $g(\frac{1}{2}) = x$
 $f^{-1}(\frac{1}{2}) = x$
 $f^{-1}(\frac{1}{2}) = x$
 $f'(x) = \frac{1}{4x}(\frac{2x-3}{x+3}) = \frac{1}{4(x+3)^2}$
 $f'(x) = \frac{1}{4x}(\frac{2x-3}{x+3}) = \frac{2(x+3)-(2x-3)}{(x+3)^2}$
 $f'(x) = \frac{1}{4x}(\frac{2x-3}{x+3}) = \frac{2(x+3)-(2x-3)}{(x+3)^2}$
 $f'(x) = \frac{1}{4x}(\frac{2x-3}{x+3}) = \frac{1}{36} = \frac{1}{4}$
 $f'(x) = \frac{1}{4x}(\frac{2x-3}{x+3}) = \frac{1}{36} = \frac{1}{4}$

Find
$$g'(a)$$
 where $g = f^{-1}$

(c) $f(x) = 4 + 3x + e^{3(x-1)}$, $a = 8$.

$$g'(a) = \frac{1}{f'(g(a))}$$

$$g'(8) = \frac{1}{f'(g(8))}$$
Guess $f(1) = 4 + 3 + 6 = 8$

$$g'(8) = \frac{1}{f'(4)}$$
Find $f'(4)$;
$$f'(x) = 0 + 3 + 3 e^{3(x-1)}$$

$$f'(6) = 3 + 3 \cdot 1 = 6$$