5.3: Derivatives and Shapes of Curves

Mean Value Theorem: Suppose a function f is continuous on the (closed) interval $[a, b]$ and differentiable on the (open) interval (a, b). Then there is a number c such that $a<c<b$ and

$$
\text { Slope of tangent at } \begin{aligned}
x & =C \\
& =f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\text { slope of the secant } A B
\end{aligned}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Illustration: $m_{A B}=\frac{f(b)-f(a)}{b-a}$

EXAMPLE 1. Find a number c that satisfies the conclusion of the Mean Value Theorem on the interval
$[0,2]$ when $f(x)=x^{3}+x-1$.
MUT

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

In our case:

$$
\Rightarrow 3 c^{2}+1=\frac{9-(-1)}{2-0}
$$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+1 \Rightarrow f(c)=3 c^{2}+1 \\
a=0, b=2 \\
f(0)=-1, \quad f(2)=8+2-1=9
\end{gathered}
$$

$$
3 c^{2}+1=5
$$

$$
3 c^{2}=4
$$

$$
c^{2}=\frac{4}{3}
$$

$$
c= \pm \frac{2}{\sqrt{3}}
$$

Final answer is $c=\frac{2 \sqrt{3}}{3}$ because $0<c<2$.

EXAMPLE 2. Suppose $1 \leq f^{\prime}(x) \leq 4$ for all x in the [2, 5]. Show that $3 \leq f(5)-f(2) \leq 12$.
MUT :

In particular,

$$
1 \leq f^{\prime}(c) \leq 4
$$

$$
\begin{gathered}
\left.\begin{array}{l}
f(b)-f(a)=f^{\prime}(c)(b-a) \\
f(5)-f(2)=f^{\prime}(c)(5-2)
\end{array}\right\} \Rightarrow \\
4 \text { because } 2<c<5 \\
\Rightarrow \quad 3.1 \leq f(5)-f(2)=3 f^{\prime}(c) \leqslant 3.4 \\
3 \leq f(5)-f(2) \leq 12
\end{gathered}
$$

Test for increasing/decreasing

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.
- If $f^{\prime}(x)=0$ on an interval, then f is constant on that interval.

EXAMPLE 3. Determine all intervals where the following function

$$
f(x)=x^{5}-\frac{5}{2} x^{4}-\frac{40}{3} x^{3}-12
$$

is increasing or decreasing.

$$
\begin{aligned}
f^{\prime}(x) & =5 x^{4}-10 x^{3}-40 x^{2}=5 x^{2}\left(x^{2}-2 x-8\right) \\
& =5 x^{2}(x+2)(x-4)=0
\end{aligned}
$$

$f(x)$ is increasing on $(-\infty,-2) \cup(4,+\infty)$
$f(x)$ is decreasing on $(-2,4)$

First Derivative Test: Suppose that $x=c$ is a critical point of a continuous function f.

- If $f^{\prime}(x)$ changes from negative to positive at $x=c$, then f has a local minimum at c.
- If $f^{\prime}(x)$ changes from positive to negative at $x=c$, then f has a local maximum at c.
- If $f^{\prime}(x)$ does not change sign at $x=c$, then f has no local maximum or minimum at c.

REMARK 4. The first derivative test only classifies critical points as local extrema and not as absolute extrema.

EXAMPLE 5. For function from Example 3 identify all local extrema.
$x=4 \quad$ local min
$x=-2$ local max

EXAMPLE 6. Find all intervals of increase and decrease of f and identify all local extrema.
(a) $f(x)=x e^{2 x}$

$$
f^{\prime}(x)=e^{2 x}+2 x e^{2 x}=\underbrace{e^{2 x}}_{1+2 x=0}(1+2 x)=0
$$

$$
x=-\frac{1}{2} \text { is critical }
$$

$$
\left.\begin{array}{l}
f(x) \upharpoonleft \text { on }\left(-\frac{1}{2}, \infty\right) \\
f(x) \geq \text { on }\left(-\infty,-\frac{1}{2}\right)
\end{array}\right\} \Rightarrow x=-\frac{1}{2} \text { is local min }
$$

$$
\begin{aligned}
(\text { b) } f(x) & =x \sqrt[3]{x^{2}-\frac{5}{3}}=x\left(x^{2}-\frac{5}{3}\right)^{\frac{1}{3}} \\
f^{\prime}(x) & =\left(x^{2}-\frac{5}{3}\right)^{\frac{1}{3}}+x \frac{1}{3}\left(x^{2}-\frac{5}{3}\right)^{\frac{1}{3}-1} \cdot 2 x \\
& =\left(x^{2}-\frac{5}{3}\right)^{\frac{1}{3}}+\frac{2 x^{2}}{3}\left(x^{2}-\frac{5}{3}\right)^{-\frac{2}{3}} \\
& =\left(x^{2}-\frac{5}{3}\right)^{\frac{1}{3}}+\frac{2 x^{2}}{3\left(x^{2}-\frac{5}{3}\right)^{2 / 3}} \\
& =\frac{3\left(x^{2}-\frac{5}{3}\right)+2 x^{2}}{3\left(x^{2}-\frac{5}{3}\right)^{2 / 3}}=\frac{3 x^{2}-5+2 x^{2}}{3\left(x^{2}-\frac{5}{3}\right)^{2 / 3}} \\
& =\frac{5\left(x^{2}-1\right)}{3\left(x^{2}-\frac{5}{3}\right)^{2 / 3}}=\frac{5(x-1)(x+1)}{3\left(\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)\right)^{2 / 3}}
\end{aligned}
$$

Critical points : $x=1, x=-1, x=\sqrt{\frac{5}{3}}, x=-\sqrt{\frac{5}{3}}$

Recall here the Second derivative test for concavity. (see Section 5.1):

- If $f^{\prime \prime}(x)>0$ for all x on an interval, then f is concave up on that interval.
- If $f^{\prime \prime}(x)<0$ for all x on an interval, then f is concave down on that interval.

In addition, if f changes concavity at $x=a$, and $x=a$ is in the domain of f, then $x=a$ is an inflection point of f.

EXAMPLE 7. Find intervals of concavity and inflection points of f, if $f^{\prime}(x)=4 x^{3}-12 x^{2}$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =f^{\prime}\left(f^{\prime}(x)\right)=\left(4 x^{3}-12 x^{2}\right)^{\prime}=12 x^{2}-24 x \\
& =12 x(x-2)
\end{aligned}
$$

$f(x)$ is concave down or $(0,2)$
$x=0$ and $x=2$ are inflection points.

EXAMPLE 8. Sketch the graph of $f(x)=x^{4}-x^{2}$ by locating intervals of increase/decrease, local extrema, concavity and inflection points.
Locate intervals of $\nearrow \geqslant$ and local extrema

$$
f^{\prime}(x)=4 x^{3}-2 x=2 x\left(2 x^{2}-1\right)=2 x(\sqrt{2} x-1)(\sqrt{2} x+1)
$$

Critical

Locate intervals of concavity and inflection points

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(4 x^{3}-2 x\right)^{\prime}=12 x^{2}-2=2\left(6 x^{2}-1\right) \\
& =2(\sqrt{6} x-1)(\sqrt{6} x+1) \\
f^{\prime \prime}(x) & =0 \text { if } x= \pm \frac{1}{\sqrt{6}} \quad \underbrace{\frac{1}{\sqrt{6}}}_{-\frac{1}{\sqrt{6}}} \text { concave }
\end{aligned}
$$

$$
\text { Note } f(0)=0
$$

Note $f(-x)=f(x)$, i.e. $f(x)$ is even \Rightarrow the graph is symmetric w.r.t. the y-axis.

Second derivative test for local extrema: Suppose $f^{\prime \prime}$ is continuous near c.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then f has a local minimum at c.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a local maximum at c.

REMARK 9. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$ or does not exist, then the test fails. In the case $f^{\prime \prime}(c)$ does not exist we use the first derivative test to find the local extrema.

EXAMPLE 10. Find the local extrema for $f(x)=1-3 x+5 x^{2}-x^{3}$.

$$
\begin{aligned}
& f^{\prime}(x)=-3+10 x-3 x^{2}=-\left(3 x^{2}-10 x+3\right) \\
&=-3\left(x-\frac{1}{3}\right)(x-3)=0 \\
& x=\frac{1}{3} \quad x=3 \quad \text { Critical points }
\end{aligned}
$$

$$
f^{\prime \prime}(x)=10-6 x
$$

$$
f^{\prime \prime}\left(\frac{1}{3}\right)=10-6 \cdot \frac{1}{3}>0 \Rightarrow x=\frac{1}{3} \text { is local min }
$$

$$
f^{\prime \prime}(3)=10-6.3<0 \Rightarrow x=3 \text { is local max }
$$

