11.5: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse.
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The most general second-degree equation in three variables x,y and z:

plane
Az? + By? + C2% + axy + brz + cyz Hdyxr + doy +dsz+ E =0, ) (1)
e )

where A, B, C,a,b,c,dy,dy,ds, E are constants. The graph of (1) is a quadric surface.

Noteif A=B=C=a=0b=c¢=0 then (1) is a linear equation and its graph is a plane (this
is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

Lélxg—l—ByQ—l—C’zQ—ﬁ—J_O or ,44$2+By2+_{2—0.

In order to sketch the graph of a surface determine the curves of intersection of the surface
with planes parallel to the coordinate planes. The obtained in this way curves are called traces
or cross-sections of the surface.



Quadric surfaces can be classified into 5 categories:

ellipsoids, hyperboloids, cones, paraboloids, quadric cylinders. (shown in the
table, see Appendix.)

The elements which characterize each of these categories:

1. Standard equation.

2. Traces (horizontal ( by planes z = k), yz-traces (by z = 0) and zz-traces (by
y=0).

3. Intercepts (in some cases).

To find the equation of a trace substitute the equation of the plane into the
equation of the surface (cf. Example 4, Section 1.1 notes). Note, in the examples

o, b C >0

below the constants a,b, and ¢ are assumed to be positive.



TECHNIQUES FOR GRAPHING QUADRIC SURFACES

e Ellipsoid. Standard equation:
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Note if a = b = ¢ we have a S'P‘\ef"e/

EXAMPLE 1. Sketch the ellipsoid
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Solution

— Find intercepts:
('!_'5|0 |0) « z-intercepts: if y = 2z =0 then z = 1y

(0 )t qlo) * y-intercepts: if z = z =0 then y = 1 Y

(o Io)t 5) + z-intercepts: f z=y=0thenz=1 §

- Obtain traces of: ellcpse
2y
% the zy-plane: plug in z = 0 and get 0 + 6 1

% the yz-plane: plug in z =0 and get —fc+ _JTS-T:‘
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% the zz-plane: plug in y = 0 and get }q' x .
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e Hyperboloids: There are two types:

— Hyperboloid of one sheet.

Standard equation:
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EXAMPLE 2. Sketch the hyperboloid of one sheet
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Hyperboloid of two sheets.
Standard equation:

EXAMPLE 3. Sketch the humorhalasd af tann choot
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Solution Find z-1r

Plane Trace
z =42
r=10




e Elliptic Cones. Standard equation:

If a = b = ¢ then we say that we have a circular cone. :I_l-t\\jL :ZL
EXAMPLE 4. Sketch the elliptic cone
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e Paraboloids There are two types:

— Elliptic paraboloid. Standard equation:

1.2 yﬂ
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EXAMPLE 5. Sketch the elliptic paraboloid
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— Huyperbolic paraboloid. Standard equation:
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EXAMPLE 6. Sketch the hyperbolic paraboloid
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e (Quadric cylinders: There are three types:

Elliptic cylinder:

— Standard equation:

22 2
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EXAMPLE 7.
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Hyperbolic cylinder:

— Standard equation:

Parabolic cylinder:

— Standard equation:
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CONCLUSION
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TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES

EXAMPLE 10. Describe and sketch the surface z = (z +4)% + (y — 2)* + 5.
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Note that replacing a wariable by its negative in the equation of a surface

causes that surface to be reflected about a coordinate plane.

EXAMPLE 11. Identify and sketch the surface.
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EXAMPLE 12. Classify and sketch the surface
Pty + 2 -4z —6y+13=0.
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