11.5: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse.

• Parabola:

or

(±a,0) (0, ±b)

• Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

Intercepts y0

Intercepts: $(\pm a, 0) & (0, \pm b)$

The most general second-degree equation in three variables x, y and z:

$$Ax^{2} + By^{2} + Cz^{2} + axy + bxz + cyz + d_{1}x + d_{2}y + d_{3}z + E = 0,$$
(1)

where $A, B, C, a, b, c, d_1, d_2, d_3, E$ are constants. The graph of $\overline{(1)}$ is a quadric surface.

Note if A = B = C = a = b = c = 0 then (1) is a linear equation and its graph is a plane (this is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

$$Ax^{2} + By^{2} + Cz^{2} + J = 0$$
 or $Ax^{2} + By^{2} + Iz = 0$.

In order to sketch the graph of a surface determine the curves of intersection of the surface with planes parallel to the coordinate planes. The obtained in this way curves are called **traces** or **cross-sections** of the surface.

Quadric surfaces can be classified into 5 categories:

ellipsoids, hyperboloids, cones, paraboloids, quadric cylinders. (shown in the table, see Appendix.)

The elements which characterize each of these categories:

- 1. Standard equation.
- 2. Traces (horizontal (by planes z=k), yz-traces (by x=0) and xz-traces (by y=0).
- 3. Intercepts (in some cases).

To find the equation of a trace substitute the equation of the plane into the equation of the surface (cf. Example 4, Section 1.1 notes). Note, in the examples

below the constants a, b, and c are assumed to be positive.

TECHNIQUES FOR GRAPHING QUADRIC SURFACES

• Ellipsoid. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Note if a = b = c we have a **Sphere**

EXAMPLE 1. Sketch the ellipsoid

$$\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1$$

Solution

- Find intercepts:

$$(13,0,0)$$
 * x-intercepts: if $y=z=0$ then $x=13$

$$(o_1 + 4, o)_*$$
 y-intercepts: if $x = z = 0$ then $y = 14$

$$(0,0,\pm 5)$$
* z-intercepts: if $x=y=0$ then $z=\pm 5$

- Obtain traces of:
 - * the xy-plane: plug in z = 0 and get $\frac{x^2}{0} + \frac{y^2}{16} = 1$

* the yz-plane: plug in
$$x = 0$$
 and get $\frac{y^2}{16} + \frac{z^2}{25} = 1$

* the xz-plane: plug in y = 0 and get $\frac{x^2}{9} + \frac{z^2}{25} = 1$

\bullet Hyperboloids: There are two types:

Hyperboloid of one sheet.
 Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

EXAMPLE 2. Sketch the hyperboloid of one sheet

$$x^2 + y^2 - \frac{z^2}{9} = 1$$

Plane	Trace
z = 0	
$z=\pm 3$	
x = 0	
y = 0	

Hyperboloid of two sheets.Standard equation:

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

EXAMPLE 3. Shotch the humerholaid of two sheet

Solution Find z-ir

Plane	Trace	
$z = \pm 2$		×
x = 0		-
y = 0		

• Elliptic Cones. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

If a = b = c then we say that we have a circular cone. $x^2 + y^2 = z^2$ EXAMPLE 4. Sketch the elliptic cone

$$z^2 = x^2 + \frac{y^2}{9}$$

Plane	Trace	
$z = \pm 1$	$x^2 + \frac{y^2}{9} = 1$ ellipse	
x = 0	$z^2 = \frac{y^2}{9} = $ $z = \pm \frac{y}{3}$ two lines through	he brigih
y = 0	$z^2 = x^2 \Rightarrow z = \pm x - 1$	

Special cases:

- <u>Paraboloids</u> There are two types:
 - Elliptic paraboloid. Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

EXAMPLE 5. Sketch the elliptic paraboloid

$$z = \frac{x^2}{4} + \frac{y^2}{9}$$

Plane	Trace
z = 1	$\frac{x^2}{4} + \frac{y^2}{9} = 1$ ellipse
x = 0	$z = \frac{y^2}{9}$ parabola
y = 0	z= x2 -1-

Special case: a = b,

Z=(x2+y2) c circular paraboloid

 $-\ Hyperbolic\ paraboloid.$ Standard equation:

$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{z}{c}$$
 If $z=k$ then $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{k}{c}$

 ${\bf EXAMPLE~6.~\it Sketch~the~hyperbolic~paraboloid}$

$$z^{7} = x^2 - y^2$$

Plane	Trace	
z = 1	$x^2 - y^2 = 1$	hyperbola) (
z = -1	x2-32 =- 1	
x = 0	Z = - y ²	parabola
y = 0	チェル	parabola

• Quadric cylinders: There are three types:

Elliptic cylinder:

Hyperbolic cylinder:

 $Parabolic\ cylinder:$

- Standard equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

EXAMPLE 7. Sketch elliptic cylinder

$$x^2 + \frac{y^2}{4} = 1$$

- Standard equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

EXAMPLE 8. Sketch hyperbolic cylinder

$$x^2 - y^2 = 1$$

- Standard equation:

$$y = ax^2$$

EXAMPLE 9. Sketch parabolic cylinder

$$y = -x^2$$

CONCLUSION

	Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $x^2 y^2 z^2$
	Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
	Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
\checkmark	Elliptic Cones	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$
	Elliptic paraboloid	$\frac{x^2}{a_2^2} + \frac{y^2}{b_2^2} = \frac{z}{c}$
	Hyperbolic paraboloid	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$
	Elliptic cylinder	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	Hyperbolic cylinder	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
	Parabolic cylinder	$y = ax^2$

TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES

Note that replacing a variable by its negative in the equation of a surface causes that surface to be reflected about a coordinate plane.

 ${\bf EXAMPLE~11.}~{\it Identify~and~sketch~the~surface}.$

EXAMPLE 12. Classify and sketch the surface

