11.6: Vector Functions and Space Curves

A vector function is a function that takes one or more variables and returns a vector. Let r(t) be

a vector function whose range is a set of 3-dimensional vectors:

(1) = (2(t). y(t), 2(0)) = 2(D)i + y(1)j + =(0)k.

where z(t), y(t), z(t) are functions of one variable and they are called the component functions.

A vector function r(t) is continuous if and only if its component functions x(t),y(t), z(1) are

continuous.

EXAMPLE 1. Given
r(t) = (tIn(t + 1), #*sint,e").

(a) Find the domain of v(t).
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(b) Find all t where x(t) is continuous. (- (‘ W)
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Space curve is given by parametric equations:

C = {(w,y.2)lx = x(t),y

where [ is an interval and t 1s a parameter.
FACT: Any continuous vector-function r(t) defines a space curve C that is traced out by the
tip of the movina vector v(t).

Any parametric curve has o direction of motion given by increasing of parameter.
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EXAMPLE 2. Describe the curve defined by the vector function (indicate direction of motion):
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(b) r(t) = (cosat,sinat, c) where a and ¢ are positive constants.
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(c) r(t) = (2cost,3sint, 1), 0 <t < 2r




(d) r(t)m = (cost,sint,t) \
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(e) r(t) = (1+4,3+264—58), 0 <t < 41.
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EXAMPLE 3. Show that the the curve given by
r(t) = <sin t, 2 cost, vV3sin t>

lies on both a plane and a sphere. Then conclude that its graph is a circle and find its radius.
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Derivatives: The derivative v' of a vector function r is defined just as for a real-valued

Sfunetion:
r(to + h) —r(tp)
h

if the limit exists. The derivative v'(ty) 15 the tangent vector to the curve r(t) at the point r(tp) =

(z(to), y(to), z(to)) -
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THEOREM 4. If the functions x(t),y(t), z(t) are differentiable, then

r(t) = (2'(t). y'(1), 2'(1)) = ()i + v/ (1)) + ' (Dk.
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EXAMPLE 5. Given r(t) = (1 + )% + €'j + sin 3tk.

(a) Find 1'(t)

F'@= <T(\*’b "[*\ d (S\n‘i&\) {2 (i \:\ %, k)

(b) Find a tangent vector to the curve at t = 0.

?’(0) = €2, e°,’3w>o) = <3\llr5>

(c) Fz'nd a tangent line to the curve at t = 0.
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(c!) Find a tangent line to the curve at the point < 1,1,0 Y-
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