12.1: Functions of Several Variables

Consider the following formulas: —_ n
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DEFINITION 1. Let D C_]I;Ei. A function f of two variables is a rule that assigns to each
ordered pair (x,y) in D a unique real number denoted by f(x,y).

The set D is the domain of f and the range of [ is the set of values that f takes on, that is
{/(z,9)|(x,y) € D}.

REMARK 2. Obviously, one can choose the independent variables arbitrary, for example, z =
f(y, 2).
e GRAPH of f(z,y).

Recall that a graph of a function f of one variable is a curve C' with equation y = f(z).

DEFINITION 3. The graph of f with domain D is the set:
S={(z,y,2) € R’|2 = f(z,y). (z,y) € D}.

The graph of a function f of two variables is a surface S in three dimensional space with
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equation z = f(z,y).




EXAMPLE 4. Find the domain and sketch the graph of the functions (1)-(4). What is the range?
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EXAMPLE 5. Sketch the domain of each of the following:

(a) 2= T — hzsl(x‘t’b\x‘;o ) ‘370}
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¢ LEVEL (CONTOUR) CURVES method of visualizing functions is the method borrowed

from mapmakers. It is a contour map on which points of constant elevation are joined to form
level (or contour) curves.

DEFINITION 6. The level (contour) curves of a function of two variables are the curves
with equations

f(x,y) =F,
where k is a constant in the range of f.
_—
A level curve is the locus of all points at which f takes a given value k ( it shows where the
graph of f has height k).
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EXAMPLE 7. Sketch the level curves of the functions (2) and (3) for the values k = 0,1,2,3,4:
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e Functions of three variables.

DEFINITION 8. Let D ¢ R®. A function f of three variables is a rule that assigns to each

ordered pair (z,y,2) in D a unique real number denoted by f(x,y, 2).

(X \jL@ = Ww
Examples of functions of 3 variables: (x, Y, %\3 — *)’ !
flz,y,z) =2 +y* + 27,
u = xyz
T(s1,52,53) =Ins; + 125, — 355.

Emphasize that domains of functions of three variables are regions in three dimensional space.




EXAMPLE 9. Find the domain of the following function:
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Note that for functions of three variables it is impossible to visualize its graph. However we

can examine them by their level surfaces:

f(@,9,2) =k

where k is a constant in the range of f. If the point (z,y. z) moves along a level surface, the value

of f(z,y, z) remains fixed.

EXAMPLE 10. Find the level surfaces of the function u = x>+ y* — 2.
=
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REMARK 11. For any function there exist a unique level curve (surface) through given point!!!
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