12.3: Partial Derivatives

DEFINITION 2. If f is a function of two variables, its partial derivatives are the functions

fa and f, defined by
f(;l'?—f—h,y) _f(“q"ﬂy)

file) = i T
vt B — Fl
fyl,y) = lim flz,y+ }1 f(z,y)

Conclusion: f.(z,y) represents the rate of change of the function f(z,y) as we change z and

hold y fixed while f,(z,y) represents the rate of change of f(z,y) as we change y and hold z fixed.
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Notations for partial derivatives: If z= f(z,y), we write
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Th } 3 = f x,g) F=D,f<P, ¢
RULE FOR FINDING PARTIAL DERIVATIVES OF z = f(z,y):

1. To find f,, regard y as a constant and differentiate f(x,y) with respect to .

2. To find f,, regard = as a constant and differentiate f(z,y) with respect to y.

EXAMPLE 3. If f(z,y) = &* + % find £.(0,1) and f,(0,1).
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EXAMPLE 4. Find all of the first order partial derivatives for the following functions:

(a) z(z, y) _:1, ® sin(zy)
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EXAMPLE 5. The temperature at a point (z,y) on a flat metal plate is given by

| 80
Ty =Ty

where T' is measured in °C and x,vy in meters. Find the rate of change of temperature with respect
to distance at the point (1,2) in the y-direction. T ¢ (\\1-)
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Geometric interpretation of partial derivatives: Partial derivatives are the slopes of

a8, #(ah) )

traces:

e fr(a,b) is the slope of the trace of the
graph of z = f(x,y) for the plane y = b at
the point (a,b).

e f,(a,b) is the slope of the trace of the
graph of z = f(z,y) for the plane z = a
at (a,b).




EXAMPLE 6. If f(z,y) = /4 — 2* — 432, find f.(1,0) and f,(1,0) and interpret these numbers

as slopes. Illustrate with sketches.
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Higher derivatives: Since
functions of = and y, so we can

following notation:

L)\ (fa:)y = f:ry
S
N, (fy)e = fue
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both of the first order partial derivatives for f(z,y) are also

in turn differentiate each with respect to = or y. We use the
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EXAMPLE 7. Find the second partial derivatives of

d f(z.y) = v* + 5y?e’” — cos(2?).
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Clairaut’s Theorem. Suppose f is defined on a disk D that contains the point (a,b). If the

functions f,, and f,, are both continuous on D then

fry(as b) - fy:r:(a': b)

Partial derivative of order three or higher can also be defined. For instance,

b3 62;: 632
fyy;r = (fyy)m - % ay2 - 63::83;2'

Using Clairaut’s Theorem one can show that if the functions f,y., fiyy and fy., are continuous

then




EXAMPLE 8. Find the indicated derivative for )
conkintow) amd hep

[z, y,z) = cos(zy + z). Conls
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(a) fay O\Lrivd-'vtj
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£ vy = (— Y $inlX Yk2) =— (Sin@\jﬁ)h(j&b(x\aﬂ))

(b) f- B3 He alove ﬂ\eonn\_
) o = * iz = va)

( Cg)(x\y\"z) -—szln(x‘j‘f?ﬁ\

10



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

