12.4: Tangent Planes and Differentials

Suppose that f(x,y) has continuous first partial derivatives and a surface S has equation z=f(x, y). Let $P(x_0, y_0, z_0)$ be a point on S, i.e. $z_0 = f(x_0, y_0)$.

Denote by C_1 the trace to f(x,y) for the plane $y=y_0$ and denote by C_2 the trace to f(x,y)for the plane $x = x_0$. let L_1 be the tangent line to the trace C_1 and let L_2 be the tangent line to the trace C_2 .

The tangent plane to the surface S (or to the graph of f(x,y)) at the point P is defined to

$$Z = f(x,y)$$

$$X = x_0$$

$$Z = f(x,y)$$

$$Z =$$

THEOREM 1. An equation of the tangent plane to the graph of the function z = f(x, y) at the point $P(x_0, y_0, f(x_0, y_0))$ is

$$z - f(x_0, y_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

CONCLUSION: A normal vector to the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, f(x_0, y_0))$ is

 $\mathbf{n} = \mathbf{n}(x_0, y_0) = \langle \mathbf{f}_{\mathbf{x}}(\mathbf{x}_{\bullet_1}, \mathbf{y}_{\bullet}), \mathbf{f}_{\mathbf{y}}(\mathbf{x}_{\bullet_1}, \mathbf{y}_{\bullet}), \mathbf{f}_{\mathbf{y}} \rangle.$

The line through the point $P(x_0, y_0, f(x_0, y_0))$ parallel to the vector **n** is perpendicular to the above tangent plane. This line is called **the normal line** to the surface z = f(x, y) at P. It follows that this normal line can be expressed parametrically as

at the point
$$(1,1) = (x_0, x_0)$$

$$Z_0 = f(x_0, x_0) = f(x_1, x_0) = 1^2 + 1^2 + 8 = 10$$

$$f_x = 2x = f_x(x_1, x_0) = 2$$

$$f_y = 2y = f_y(x_1, x_0) = 2$$

$$Tongent plane at (1, 1, 10) with$$

$$2(x-1) + 2(y-1) - (2-10) = 0$$

$$2x - 2 + 2y - 2 - 2 + 10 = 0$$

2x+2y-7+6=0

EXAMPLE 2. Find an equation of the tangent plane to the graph of the function $z = x^2 + y^2 + 8$

Example 3 Find parametric equations for

the normal line to the surface

$$\frac{2}{2} = e^{4y} \sin(4\pi)$$
at $P(\frac{\pi}{8}, 0, 1)$.

$$\frac{4y}{2x} = 4e^{4y} \cos(4x)$$

$$\frac{4y}{2x} \cos(4x)$$

$$\frac{2x(\frac{\pi}{8}, 0)}{2x(\frac{\pi}{8}, 0)} = 0$$

$$\frac{2y}{2y} = 4e^{4y} \sin(4x)$$

$$\frac{2y}{8}(\frac{\pi}{8}, 0) = 4$$

$$z_x = 4e^{4y} \cos(4x)$$

$$\frac{3}{n}\left(\frac{\pi}{8},0\right)=\langle 0,4,-1\rangle$$

$$\frac{y}{z} = \frac{1}{2} + ct$$

$$\frac{1}{2} = \frac{1}{2} + ct$$

$$x = \frac{\pi}{8}$$

$$y = 4t$$

$$z = 1 - t$$

The differentials dx and dy are independent variables. The differential dz (or the total differential) is defined by

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy.$$

FACT: $\Delta z \approx \mathrm{d}z$.

This implies:

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

or

Differentials. Given z = f(x, y). If Δx and Δy are given increments of x = a and y = b respectively, then the corresponding **increment** of z is

$$\Delta z(a,b) = f(a + \Delta x, b + \Delta y) - f(a,b). \tag{1}$$

 $^{^{1}}$ the pictures are from our textbook

1

The differentials dx and dy are independent variables. The differential dz (or the tot differential) is defined by

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy. = \exists_{x} dx + \exists_{y} dy$$

 $s = f(a_1 s x, b_1 s y) - f(a_1 b) \sim d + (a_1 b)$ FACT: $\Delta z \approx dz$.

This implies:

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

This implies:
$$f(a + \Delta x, b + \Delta y) = f(a, b) \approx d + (a, b)$$

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

EXAMPLE 4. Use differentials to find an approximate value for $\sqrt{1.03^2 + 1.98^3}$.

$$f(x_1y) = \sqrt{x^2 + y^3} \qquad f(x_1y) = \sqrt{1^2 + 2^3} = \sqrt{9} = \sqrt{1000} + \sqrt{1000} = \sqrt{10000} = \sqrt{1000} = \sqrt{1000$$

If u = f(x, y, z) then the differential du at the point (x, y, z) = (a, b, c) is defined in terms of the differentials dx, dy and dz of the independent variables:

$$du(a,b,c) = f_x(a,b,c)dx + f_y(a,b,c)dy + f_z(a,b,c)dz.$$

EXAMPLE 5. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm and 50 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

A function f(x,y) is differentiable at (a,b) if its partial derivatives f_x and f_y exist and are continuous at (a,b).

For example, all polynomial and rational functions are differentiable on their natural domains. Let a surface S be a graph of a differentiable function f. As we zoom in toward a point on the surface S, the surface looks more and more like a plane (its tangent plane) and we can approximate the function f by a linear function of two variables.

2 =
$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) =: L(x,y).$$

If f_x and f_y are $f(x_1y) \text{ is differentiable}$ $cut(a_1b)$ there exist tengent $plane at (a_1b)$