13.1: Double integrals over rectangles

Recall that a single definite integral can be interpreted as area:
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The exact area 1s also the definition of the definite integral:
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Problem: Assume that f(z,y) is defined on a closed rectangle

R=la,b] x [b,c] = {(z,y) € Rla<z<be<y< d} and f(z,y) > 0 over R. Denote t
S the part of the surface z = f(z,y) over the rectangle R. What the volume of the regio

under S and above the zy-plane is?

Solution: Approximate the volume. Divide up a < x < b into n subintervals and divide u

¢ <y < d into m subintervals. From each of these smaller rectangles choose a point (7, y;
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Over each of these smaller rectangles we will construct a box whose height is given
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The volume is given by

which is also the definition of a double integral //
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Another notation: fL flz,y)dA = //R f(a:,y)iﬂ::d_q (Ah= Jt;oiﬁ y-‘:_';.:z\",{ k)_

THEOREM 1. If f is continuous on R then f is integrable over R.

THEOREM 2. If f(z,y) > 0 and f is continuous on the rectangle R = [a,b] X [¢,d], then the
volume V' of the solid S that lies above R and inder the graph of f, 1.e.

S ={(z,y,2) e R%|(z,y) € R,0 < 2 < f(z,y), (x,y) € R},
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EXAMPLE 3. Evaluate the integral
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where R = [—1,0] x [—3, 3] by identifying it as a volume of a solid.
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