13.4: Polar Coordinates

REVIEW:

The connection between polar and Cartesian coordinates:

$$\cos \theta = \frac{\mathbf{SC}}{\mathbf{Y}}$$

$$\sin \theta = \frac{9}{1}$$

$$\tan \theta = \frac{9}{x}$$

REMARK 1. In converting from the Cartesian to polar coordinates we must choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE 2. What curve is represented by the polar equation

(a)
$$r = 12 \simeq \sqrt{\chi^2 + y^2}$$

52+y2=122 circle with radius 12 centered at origin,

(b)
$$\theta = \frac{\pi}{3}$$

EXAMPLE 3. Sketch the region in the Cartesian plane consisting of points whose polar coordinates

EXAMPLE 4. Find a polar equation for the curve represented by the given Cartesian equation:

(a)
$$x^2 + y^2 = 2by$$

Note that this is the circle $x^2 + (y - b)^2 = b^2$

$$r^2 = 2b r sin\theta$$

$$r = 2b sin\theta$$

(b)
$$(x-a)^2 + y^2 = a^2$$
 { the same of

