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14.2: Line Integrals [Rt
Line integrals on plane: Let C be a plane curve with parametric equations:
z=ux(t),y=ylt), a<t<b domar N

or we can write the parametrization of the curve as a vector function:
r(t) = (@(t),y(0)) ., a<t<b

DEFINITION 1. The line integral of f(x,y) with respect to arc length, or the line integral of

f along C' is
[ raas
o



Recall that the arc length of a curve given by parametric equations x = z(t),y = y(t), a <

t < b can be found as \ b ___
j as = L:fa ds, =S J (x‘\t*k\j‘\t dt
where C a

ds = /@) + (Y (D) dr.

The line integral is then b
[reaa= [ £, i) {E1 A4

If we use the vector form of the parametrization we can simplify the notation up noticing that

r'(t) = (' (1), /(1))

and then

S
ds = /@OF + () dt = \ ¢ (©)dt




Q<b

Using this notation the line integral becomes,

b
/C [(z,y)ds = / F(t), g6 (1) .

REMARK 2. The value of the line integral does not depend on the parametrization of the curve,
provided that the curve is traversed exactly once ast increases from a to b.

Let us emphasize that ds = |/'(t)|dt = \/[x’(t)]2 + [y (1)) dt.



EXAMPLE 3. Evaluate the line integral / yds, where C:x =13, y=1t2,0<t < 1.
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Line integrals in space: Let C' be a space curve with parametric equations:

r(t)=z(@)i+y(t)j+z2()k, a<t<b.

The line integral of f along C is

b
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EXAMPLE 4. Evaluate the line integral /(x + vy + z)ds. where C is the line segment joining
c
(—1,1,2) and (2,3,1).
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Physical interpretation of a line integral: Let p(x,y, z) represents the linear density at a

point (z,y, z) of a thin wire shaped like a curve €. Then the mass m of the wire is:

/25 \ m= l plz,y, 2)ds.
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EXAMPLE 5. A thin wire with the linear density p(x,y) = 2%+ 2y takes the shape of the curve
C' which consists of the arc of the circle 2* +y?> = 1 from (1,0) to (0,1). Find the mass of the
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Line integrals with respect to z,y, and z. Let C be a space curve with parametric
equations:
z=a(t)y =y(t)z ==(t), a<t<bh,

The line integral of f with respect to z 1s,
b
r,y, z)dr = z(t), y(t), z(t))z'(t) dt.
[ #e s = [ ., 0@
The line integral of f with respect to y is,
b
/ flz oy, z)dy = / fla(t),u(t), 2(1))y/(t) dt.
C [ a
The line integral of f with respect to z is,
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These two integral often appear together ])'}: the following notation:

/ Pdr+Qdy+ Rdz
c

or

/ Pdr +Qdy.
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where C' is the circle 2 + y* = 1 oriented in the counterclockwise direction.
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Line integrals of vector fields.
PROBLEM: Given a continuous force field,

F(z,y,2) = Plz,y,2)i+ Qz,y,2)j + R(z,y, 2)k,
such as a gravitational field. Find the work done by the force F' in moving a particle along a curve
C: ;.(9: () i+yt)j+z2()k, a<t<b.
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DEFINITION 7. Let F be a continuous vector field defined on a curve C given by a vector
function r(t), a <t < b. Then the line integral of F along C' s

Y, =/CF' dr(t):/abF(r(t))‘r’(t)dt,

REMARK 8. Note that this integral depends on the curve orientation:

V/_CF~dr(f)_—/CF'dr(f.) o @R
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EXAMPLE 9. Find the work done by the force field ¥ (x,y, z) = (xy,yz,22) in moving a particle

along the curve C': r(t) :@5€j> <<l
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Relationship between line integrals of vector fields and line integrals with respect

to z,y, and =.
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