14.3: The fundamental Theorem for Line Integrals

14.4: Green's Theorem

· Conservative vector field. (see also Seekon 14.1 in textlook)

DEFINITION 1. A vector field \mathbf{F} is called a conservative vector field if it is the gradient of some scalar function f s.t $\mathbf{F} = \nabla f$. In this situation f is called a potential function for \mathbf{F} .

$$\begin{array}{ccc}
\ddot{F} = \langle P, Q, R \rangle & f_x = P \\
Vf = \langle f_x, f_y, f_z \rangle & f_z = R
\end{array}$$

Example if
$$\vec{F} = \langle x, y^2, z^3 \rangle$$
 conservative if $\vec{f} = \frac{x^2}{2} + \frac{y^3}{3} + \frac{z^4}{4} + C$ then $\nabla f = \vec{F}$ a potential function

REMARK 2. Not all vector fields are conservative, but such fields do arise frequently in Physics.

Illustration: Gravitational Field: By Newton's Law of Gravitation the magnitude of the gravitational force between two objects with masses m and M is The gravitational force acting on the object at (x, y, z) is

$$|\mathbf{F}| = G \frac{mM}{r^2},$$

where $r = \sqrt{x^2 + y^2 + z^2}$ is the distance between the objects and G is the gravitational constant. Let the position vector of the object with mass m be $\mathbf{x} = \langle x, y, z \rangle$. Then

Then the gravitational force acting on the object at
$$x = \langle x, y, z \rangle$$
 is
$$F(x, y, z) = |F| \cdot F = |F| \left(\times \langle x, y, z \rangle \right)$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle = -\frac{|F|}{r} \langle x, y, z \rangle$$

$$= -\frac{|F|}{r} \langle x, y, z \rangle$$

$$f(x, y, z) = \frac{GmM}{\sqrt{x^2 + y^2 + z^2}}.$$

Find its gradient and answer the questions:

- (a) Is the gravitational field conservative? Yes, because 343 Vf=F
- (b) What is a potential function of the gravitational field?

• The fundamental Theorem for Line Integrals: Recall Part 2 of the Fundamental Theorem of Calculus:

 $\int_{a}^{b} F'(x) dx = F(b) - F(a),$ range Farametrization where F' is continuous on [a, b].

Let C be a smooth curve given by $\mathbf{r}(t)$, $a \leq t \leq b$. Let f be a differentiable function of two or three variables and ∇f is continuous on C. Then

Proof.

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = f(\mathbf{A})$$

$$\int_{C} \nabla f \cdot d\mathbf{r} = \int_{C} \nabla f(\mathbf{r}'(t)) \cdot \mathbf{r}'(t) dt \qquad f(t)$$

$$= \int_{C} \langle f_{x}(\mathbf{r}'(t)), f_{y}(\mathbf{r}'(t)), f_{z}(\mathbf{r}'(t)), f_{z}(\mathbf{r}'(t)) \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle dt$$

$$= \int_{C} \langle f_{x}(\mathbf{r}'(t)), f_{y}(\mathbf{r}'(t)), f_{z}(\mathbf{r}'(t)), f_{z}(\mathbf{r}'(t)) \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle dt = \int_{C} \langle f_{x}(\mathbf{r}'(t)), f_{y}(\mathbf{r}'(t)), f_{y}(\mathbf{r}'(t)), f_{z}(\mathbf{r}'(t)), f_{z}($$

REMARK 4. If C is a closed curve then

then
$$\oint \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) = 0$$

$$\downarrow \nabla f \cdot d\vec{r} = 0$$
If \vec{r} is conservative then $\oint \vec{r} \cdot d\vec{r} = 0$

COROLLARY 5. If F is a conservative vector field and C is a curve with initial point A and

EXAMPLE 6. Find the work done by the gravitational field

$$\mathbf{F}(x,y,z) = -\frac{GmM}{(x^2+y^2+z^2)^{3/2}} \left\langle x,y,z \right\rangle$$

in moving a particle with mass m from the point (1,2,2) to the point (3,4,12) along a piecewise-smooth curve C.

By Example 3,
$$\vec{F}$$
 is conservative and its potential is

$$f(x_1, y_1, z) = \frac{GmM}{\sqrt{x^2 + y^2 + z^2}}.$$
Thus, $\vec{F} = \nabla f$.

$$W = \int_{C} \vec{F} \cdot d\vec{F} = \int_{(1,2,2)}^{(3,4,12)} \nabla f \cdot d\vec{F} = \int_{(1,2,2)}^{(3,4,12)} f(3,4,12) - f(3,4,12$$

Notations And Definitions:

DEFINITION 7. A piecewise-smooth curve is called a $\operatorname{\mathbf{path}}$.

• Types of curves:

• Convention: The positive orientation of a simple closed curve C refers to a single counterclockwise traversal of C. If C is given by $\mathbf{r} = x(t)\mathbf{i} + y(t)\mathbf{j}$, $a \le t \le b$, then the region D bounded by C is always on the left as the point $\mathbf{r}(t)$ traverses C.

• The positively oriented boundary curve of D is denoted by ∂D .

•GREEN's THEOREM: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P(x,y) and Q(x,y) have continuous partial derivatives on an open region that contains D, then

EXAMPLE 8. Evaluate:
$$I = \oint_C e^x (1 - \cos y) \, dx - e^x (1 - \sin y) \, dy$$

where C is the boundary of the domain $D = \{(x,y) : 0 \le x \le \pi, 0 \le y \le \sin x\}$.

EXAMPLE 9. Let C be a triangular curve consisting of the line segments from (0,0) to (5,0), from (5,0) to (0,5), and from (0,5) to (0,0). Evaluate the following integrals:

(a)
$$I_1 = \oint_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{2}y^2) dx + (xy + \frac{1}{3}x^3 + 3x) dy = \int_C (x^2y + \frac{1}{3}x^3 + \frac{1}$$

(b)
$$I_2 = \oint_C (x^2y + \frac{1}{2}y^2 + e^{x\sin x}) dx + (xy + \frac{1}{3}x^3 + x - 4\arctan(e^y)) dy = \underbrace{\underbrace{\underbrace{\underbrace{1}}_{3}x^3 + x - 4\arctan(e^y)}_{A(D)}}_{A(D)} dy = \underbrace{\underbrace{\underbrace{1}_{3}x^3 + x - 4\arctan(e^y)}_{A(D)}}_{A(D)} dy = \underbrace{\underbrace{\underbrace{1}_{3}x^3 + x - 4\arctan(e^y)}_{A(D)}}_{A(D)} dy = \underbrace{\underbrace{\underbrace{1}_{3}x^3 + x - 4\arctan(e^y)}_{A(D)}}_{A(D)} dy = \underbrace{\underbrace{1}_{3}x^3 + x - 4\arctan(e^y)}_{A(D)} dy = \underbrace{\underbrace{1}_{3}x^3 + x - 4\arctan(e^y)}$$

(c)
$$I_3 = \oint_C (x^2y + \frac{1}{2}y^2 - 55\arcsin(\sec x)) dx + (12y^5\cos y^3 + xy + \frac{1}{3}x^3 + x) dy$$

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$$

$$A(D) = \frac{2S}{2}$$

SUMMARY: Let $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ be a vector field or the open simply connected domain D. Suppose that P and Q have continuous partial derivatives through D. Then the facts below are equivalent.

The field \mathbf{F} is $\mathbf{conservative}$ on D \iff $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed curve C in D

The field F is conservative on D
$$\iff \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \text{ throughout } D$$

$$0 = \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{or } \\ 0 & \text{or } \end{cases} \qquad \begin{cases} 0 & \text{o$$

EXAMPLE 11. Determine whether or not the vector field is conservative:

(a)
$$F(x,y) = \langle x^2 + y^2, 2xy \rangle$$
.
(b) $F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle$

$$\Rightarrow \begin{cases} F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle \\ F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle \end{cases}$$

$$\Rightarrow \begin{cases} F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle \\ F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle \end{cases}$$

(b)
$$F(x,y) = \langle x^2 + 3y^2 + 2, 3x + ye^y \rangle$$

$$\frac{\partial P}{\partial x} = 6y + \frac{\partial R}{\partial x} = 3$$

$$\frac{\partial P}{\partial y} = 6y + \frac{\partial R}{\partial x} = 3$$

EXAMPLE 12. Given
$$\mathbf{F}(x,y) = \sin y \mathbf{i} + (\underbrace{x \cos y + \sin y}) \mathbf{j}$$
.

(a) Show that F is conservative.

$$\frac{\partial \lambda}{\partial b} = \cos \beta = \frac{9x}{90}$$

(b) Find a function f s.t. $\nabla f = \mathbf{F}$

(b) Find a function
$$f$$
 s.t. $\nabla f = F$

$$\begin{cases}
f_x, f_y = \langle P, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x = Siny = \langle F, Q \rangle \\
f_x = Siny = \langle F, Q \rangle
\end{cases}$$

$$\begin{cases}
f_x =$$

$$f(x,y)=x \sin y - \cos y + C$$

$$c'(y)=\sin y = C(y)=-\cos y + C$$

(c) Find the work done by the force field F in moving a particle from the point (3,0) to the point $(0,\pi/2)$.

$$W = \int_{(3,0)} \vec{F} \cdot d\vec{r} = \int_{(3,0)} \nabla f \cdot d\vec{r} = \int_{(3,0)} \nabla f \cdot d\vec{r} = \int_{(3,0)} \vec{F} \cdot$$

(d) Evaluate $\oint_C \mathbf{F} \, d\mathbf{r}$ where C is an arbitrary path in \mathbb{R}^2 . \mathbf{r} is conservative $\oint_C \mathbf{F} \cdot d\mathbf{r} = \mathbf{0}$ $\forall C$ in $\bigcap_{C \in \mathcal{S}_d} \mathbf{r}$

EXAMPLE 13. Given
$$\mathbf{F} = \langle 2xy^3 + z^2, 3x^2y^2 + 2yz, y^2 + 2xz \rangle = \mathbf{F}(x, y, z)$$

Find a function
$$f$$
 s.t. $\nabla f = \mathbf{F}$