14.3: The fundamental Theorem for Line Integrals

14.4: Green’s Theorem
( set also Seebon (Y] iw kx{-?.ou.)

¢ Conservative vector field

DEFINITION 1. A vector field ¥ is called a conservative vector field if it is the gradient of
some scalar function f s.t ¥ =N f. In this situation f is called a potential function for F.
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REMARK 2. Not all vector fields are conservative, but such fields do arise frequently in Physics.

Illustration: Gravitational Field: By Newton's Law of Gravitation the magnitude of the
gravitational force between two objects with masses m and M is The gravitational force acting

on the object at (z,y, 2) is
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Then the gravitational force actmcr on the obJect at x = (z,y, z) is

F(r,5,2) = lFI F = \Fl(-ow >
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g/the distance between the objects and G is the gravitational constant.
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EXAMPLE 3. Let
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(a) Is the gravitational field conservative? yes\e“““'sc 3%’; ve= \'—?

Find its gradient and answer the questions:
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(b) What is a potential function of the gravitational field?
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e The fundamental Theorem for Line Integrals: Recall Part 2 of the Fundamental
Theorem of Calculus:
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where F’ is continuous on [a, b|. !
Let C' be a smooth curve given by\r(#), a < t < b.JLet f be a differentiable function of two or

three variables and V f is continuous on C. Then
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COROLLARY 5. If F is a conservative vector field and C is a curve with initial point A and

terminal point B_then:
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EXAMPLE 6. Find the work done by the gravitational field
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in mowving a particle with mass m from the point (1,2,2) to the point (3,4,12) along a piecewise-

smooth curve C.
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Notations And Definitions:

DEFINITION 7. A piecewise-smooth curve is called a path.

e Types of curves:

simple not closed

not simple not closed

e Types of regions:

simply connected

/
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simple closed

not simply connected

not simple, closed




e Convention: The positive orientation of a simple closed curve C refers to a single

counterclockwise traversal of C. If C'is given by r = 2(t)i+ y(t)j,a <t < b, then the region

D bounded by €' is always on the left as the point r(t) traverses C.
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e The positively oriented boundary curve of D is denoted by dD.




oGREEN’s THEOREM: Let C' be a positively oriented, piecewise-smooth, simple closed
curve in the plane and let D be the region bounded by C'. If P(x,y) and Q(x,y) have continuous

partial derivatives on an open region that contains D, then
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EXAMPLE 8. Evaluate: p Q
N /—\

I= } e’ (1 —cosy)dx — e"(1 —siny) dy
o

where C' is the boundary of the domain D = {(z,y) : 0< 2z < m,0<y<sinz}.
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EXAMPLE 9. Let C be a triangular curve consisting of the line segments from (0,0) to (5.0),
from (5,0) to (0,5), and from (0.5) to (0.0). Fwvaluate the following integrals:
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eApplication: Computing areag Clhoosde ?&a s.t. sxg ‘ﬁ.
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SUMMARY: Let ¥(z,y) = Plz.y)i + Q(z,y)] be a vector field o 4 ply connected

domain D. Suppose that P and Q) have continuous partial derivatives through D. Then the facts
below are equivalent.
The field F is
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conservativepn D
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EXAMPLE 11. Determine whether or not the vector field is conservative:

(a) F(z,y) = (2 + y* 22y). 3 .

¢ — =
™ %T—Q%“ ax

b) F(z.y) = (% + 34> + 2.3z + ye?
(b) F(z,y) = (2 +3y" + 2,3z + ye?) 2 {5 wot ConvevVarigp
P QU
2

T Fow

14



EXAMPLE 12. Given F(x,y) ssinyi+ (zcosy + siny)j.

(a) Show that ¥ is conservative. F Q
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(c) Find the work done by the force field ¥ (n moving a particle from the point (3,0) to the point
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EXAMPLE 13. Given s /R\ <)
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Find a function f s.t. Vf=F
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