14.5: Curl and Divergence

Introduce the vector differential operator V as
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If F(z,y,2) = Plz,y,2)i+ Q(x,y,2)j + R(x,y,2)k is a vector field on R* and the partial
derivatives of P,(Q, R all exist, then the curl of F is the vector field on R?® defined by
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EXAMPLE 1. Find the curl of the vector field
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Question What is the curl of a two-dimensional vector field

F(z,y) = P(z,y)i+ Q(z,y)j ?
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CONCLUSION: Green’'s Theorem in vector form:
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THEOREM 2. If a function f(z,y,z) has continuous partial derivatives of second order then
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COROLLARY 3. If F is conservative, then curlF = 0.
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The proof of the Theorem below requires Stokes” Theorem (Section 14.8).

THEOREM 4. If F is a vector field defined on R*® whose component functions have continuous

partial derivatives and curlF = 0, then ¥ is a conservative vector field.



EXAMPLE 5. Let F(x,y,z) = (2,9, 2%).

(a) Show that ¥ is conservative.
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If F(z,y,2) = P(x,y,2)i + Q(z,y.2)j + R(z,y,2)k is a vector field on R* and the partial

derivatives P,, Q),, I\, exist, then the divergence of F is the scalar field on defined by
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EXAMPLE 6. Find the divergence of the vector field

F(z,y,2) = (sin(zyz),2* yz).
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THEOREM 7. If the components of a vector field ¥(x,y, z) = P(x,y, 2)i+Q(x,y, 2)j+ R(z,y, 2 )k
has continuous partial derivatives of second order then
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EXAMPLE 8. Is there a vector field G on R? s.t. curl G = (yz,xyz,2y)?
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