Math 365 Activity 9: Approximating Square Roots

On a separate sheet of paper, find the following approximations, using the indicated methods. The methods are described below.

1. Give a decimal approximation to $\sqrt{2}$, accurate to the hundredths place, using
(a) the square root algorithm, and
(b) the guess-and-check method.

Your two answers should agree. Show your work.
2. Give a decimal approximation to $\sqrt{10}$, accurate to the hundredths place, using
(a) the square root algorithm, and
(b) the guess-and-check method.

Your two answers should agree. Show your work.

Guess-and-check method. As an example, we will approximate $\sqrt{3}$. First note that since $1^{2}=1$ and $2^{2}=4$, it must be that

$$
1<\sqrt{3}<2
$$

Compute the squares of $1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8$, and 1.9 , or enough of these to determine between which two of these $\sqrt{3}$ lies. We find that $(1.7)^{2}=2.89$ and $(1.8)^{2}=3.24$, so

$$
1.7<\sqrt{3}<1.8
$$

Compute the squares of $1.71,1.72,1.73,1.74,1.75,1.76,1.77,1.78$, and 1.79 , or enough of these to determine between which two of these $\sqrt{3}$ lies. We find that $(1.73)^{2}=2.9929$ and $(1.74)^{2}=3.0276$, so

$$
1.73<\sqrt{3}<1.74
$$

Therefore $\sqrt{3}$ is approximately 1.73 , accurate to within 10^{-2}.

Square root algorithm. This is similar to the long division algorithm in some ways. As an example, to find $\sqrt{3}$, first write 3 under the square root symbol, with zeros after the decimal point grouped in pairs:

$$
\sqrt{3.0000}
$$

(For larger numbers, the digits to the left of the decimal point will also be grouped in pairs.) Now write, just above the square root symbol, aligned with the digit 3 , the largest digit whose square is less than or equal to 3 (so this would be 1). Square this number (i.e. square 1), then subtract from 3, similarly to the long division algorithm, but bring down the next two digits:

$$
\begin{aligned}
& 1 \\
& \sqrt{3.0000} \\
& \frac{1}{200}
\end{aligned}
$$

Next, double the number written on top (the 1 in this case). Write it to the left of the " 200 ", and leave a blank:

$$
\begin{gathered}
1 \\
\sqrt{3.0000} \\
\left(2 _\right) \frac{1}{200}
\end{gathered}
$$

Fill in the blank with the largest digit x so that $(20+x) x$ is less than 200 , the number to its right. (The number $20+x$ will be in parentheses in the display, after you fill in the blank.) In this case, $x=7$, since $(20+7)(7)=(27)(7)=189$. Write the 7 above as well as in the blank, and write the product, 189, below the 200, and subtract:

Now bring down the next two digits. Double the number written on top (the 17), write it to the left of the " 1100 ", and continue as before; $(343)(3)=1029$, so 3 is the correct next digit:

$1 \quad 7 \quad 3$$\sqrt{3.0000}$	
	1
(2 7)	200
	189
(34 3)	1100

We could continue in the same way to get a better approximation. If we stop here, we have an approximation to $\sqrt{3}$, accurate to within 10^{-2}, and it is 1.73 .

