Math 365-501 Exam 3

April 17, 2009
S. Witherspoon

Name
There are 9 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [11 points] In an arithmetic sequence, the fourth term minus the first term equals 12 . The sum of the first and the fourth term is -8 . Find the eighth term of the sequence.
2. [9] Find a digit to fill in the blank, if possible, so that the number
\qquad
is divisible by
(a) 3
(b) 4
(c) 11
3. (a) [10] Find the GCD for 350 and 588 using the Euclidean algorithm.
(b) [5] Find the LCM for 350 and 588.
(c) [5] Find the GCD and LCM for 12 ! and 13 !.
4. [10] Paper plates come in packages of 20 , paper cups in packages of 8 , and napkins in packages of 16 . What is the least number of plates, cups, and napkins that can be purchased so that there is an equal number of each?
5. [6] Fill in each of the blanks so that that answer is nonnegative and the least possible number:
(a) $165473 \equiv$ \qquad $(\bmod 5)$
(b) $265473 \equiv$ \qquad $(\bmod 9)$
6. [10] If a fraction is equal to $\frac{2}{3}$, and the sum of the numerator and denominator is 20 , what is the fraction?
7. [10] Mariah added fractions on her paper as follows:

$$
\frac{1}{2}+\frac{1}{3}=
$$

Do the addition correctly, and draw a picture that will help Mariah understand.
8. [12] Find the simplest form for each of the following:
(a) $\left(\frac{2}{5}\right)^{2}+(-2)^{4} \div 5 \cdot \frac{1}{2}+5^{-2}$
(b) $\frac{x^{2}-y^{2}}{x^{2}+x y}$
9. [12] (True/False/Counterexample) For each statement, indicate whether it is true (T) or false (F). If it is false, give a counterexample.
(a) For all integers a, b, and c, if $a c=b c$, then $a=b$.
(b) For all integers a and $b,|a+b|=|a|+|b|$.
(c) For all integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$.
(d) For all integers a and b, if a and b are both even, then $\operatorname{GCD}(a, b)=2$.
(e) For all natural numbers a, b, and $c, \frac{a+b}{a+c}=\frac{b}{c}$.
(f) For all natural numbers a, b, and $c, \frac{a b+b c}{b}=a+c$.

