Math 365 Partial solutions to Exam 1 (white version)

1. $10211_{\text {three }}$
2. $301_{\text {five }}, \quad 10111_{\text {five }}$
3. T, F, T, F, F
4. 5
5. (a) distributive property of multiplication over addition
(b) associative property of multiplication
6. (a) $160 \quad$ (b) $a_{n}=5 \cdot 2^{n-1}$
7. (Answers vary.) You could tell her that other numbers also have this property: $0 \cdot 2=0,0 \cdot 3=0$ etc. So it doesn't make sense to assign a value to $0 \div 0$, and we just say that it is undefined. More formally: By definition, $a \div b=c$ if c is the unique whole number for which $b \cdot c=a$. In this case, since 1 is not the unique number c satisfying $0 \cdot c=0$, we say that $0 \div 0$ is undefined.
8. (There was no partial credit on this problem, other than arithmetic errors, since each part was not worth very many points.)
(a) 1225 (b) 2444 (There are 49-2 $=47$ terms, and so there are $\frac{47}{2}$ "pairs" each with a sum of 104, so we have $104 \cdot \frac{47}{2}=2444$.)

Math 365 Partial solutions to Exam 1 (yellow version)

1. $11002_{\text {three }}$
2. $341_{\text {five }}, \quad 3311_{\text {five }}$
3. 6
4. (a) distributive property of multiplication over addition
(b) associative property of multiplication
5. (a) $160 \quad$ (b) $a_{n}=5 \cdot 2^{n-1}$
6. (Answers vary.) You could tell her that other numbers also have this property: $0 \cdot 2=0,0 \cdot 3=0$ etc. So it doesn't make sense to assign a value to $0 \div 0$, and we just say that it is undefined. More formally: By definition, $a \div b=c$ if c is the unique whole number for which $b \cdot c=a$. In this case, since 1 is not the unique number c satisfying $0 \cdot c=0$, we say that $0 \div 0$ is undefined. 8. (There was no partial credit on this problem, other than arithmetic errors, since each part was not worth very many points.)
(a) 1225 (b) 2444 (There are 49-2 $=47$ terms, and so there are $\frac{47}{2}$ "pairs" each with a sum of 104, so we have $104 \cdot \frac{47}{2}=2444$.)
7. F, T, F, T, F
