Math 365 Partial solutions to Exam 2 (white version)

2. (a) No. Counterexample: $x=0, y=1$ and $z=2$. Then $x y=x z$, but $y \neq z$.
(b) If $y=z$, then $x y=x z$. Yes, it's true.
3. (a) 6. (Since a must correspond to 4 , there are 3 possibilities left for b to correspond to. Once that is chosen, there are 2 possibilities left for c to correspond to. Once that is chosen, the number corresponding to d is simply the one that is left. So there are $3 \cdot 2 \cdot 1=6$ correspondences.)
(b) 4. (There are 2 possibilities for a to correspond to. Once that is chosen, there is only 1 left for b. There are two possibilities for c to correspond to, and once that is chosen, there is only 1 left for d. So the answer is $2 \cdot 1 \cdot 2 \cdot 1=4$.)
4. Using the equation

$$
n(B \cup F \cup S)=n(B)+n(F)+n(S)-n(B \cap F)-n(B \cap S)-n(F \cap S)+n(B \cap F \cap S)
$$

we have $86=52+33+23-12-3-n(B \cap S)+2$, so that $n(B \cap S)=9$.
5. $s+n=61,4 s+6 n=266$, solve to get $s=50$
6. Using the equation $a_{n}=a_{1}+d(n-1)$, since $a_{4}=1$ and $a_{10}=-17$, we have $1=a_{1}+3 d$ and $-17=a_{1}+9 d$. Solve to get $d=-3$ and $a_{1}=10$. Then $a_{2}=7$.
7. (a) $A, C, D \quad$ (b) No.
8. T, F, T, T, F

Math 365 Partial solutions to Exam 2 (yellow version)

2. (a) No. Counterexample: $a=0, b=1$ and $c=2$. Then $a b=a c$, but $b \neq c$.
(b) If $b=c$, then $a b=a c$. Yes, it's true.
3. (a) 6. (Since d must correspond to 1 , there are 3 possibilities left for a to correspond to. Once that is chosen, there are 2 possibilities left for b to correspond to. Once that is chosen, the number corresponding to c is simply the one that is left. So there are $3 \cdot 2 \cdot 1=6$ correspondences.)
(b) 4. (There are 2 possibilities for a to correspond to. Once that is chosen, there is only 1 left for c. There are two possibilities for b to correspond to, and once that is chosen, there is only 1 left for d. So the answer is $2 \cdot 1 \cdot 2 \cdot 1=4$.)
4. Using the equation

$$
n(B \cup F \cup S)=n(B)+n(F)+n(S)-n(B \cap F)-n(B \cap S)-n(F \cap S)+n(B \cap F \cap S)
$$

we have $91=52+33+23-12-3-n(B \cap S)+2$, so that $n(B \cap S)=4$.
5. $s+n=57,3 s+5 n=205$, solve to get $s=40$
6. Using the equation $a_{n}=a_{1}+d(n-1)$, since $a_{5}=4$ and $a_{11}=-8$, we have $4=a_{1}+4 d$ and $-8=a_{1}+10 d$. Solve to get $d=-2$ and $a_{1}=12$. Then $a_{2}=10$.
7. (a) $B, D \quad$ (b) No.
8. F, T, F, T, F

