Math 365 Exam 2
 October 22, 2010
 S. Witherspoon

Name
There are 8 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [10] Construct a truth table for the proposition $(\sim p) \wedge q$.
2. Consider the following proposition about all integers a, b, and c.
p : If $a b=a c$, then $b=c$.
(a) [5] Is p true? If not, give a counterexample.
(b) [5] State the converse of p. Is it true? If not, give a counterexample.
3. How many one-to-one correspondences are there between the sets $\{a, b, c, d\}$ and $\{1,2,3,4\}$ if
(a) [5] in each correspondence, d must correspond to 1 ?
(b) [5] in each correspondence, a and c must each correspond to an odd number?
4. [15] Of 91 children playing baseball, football, or soccer, 52 play baseball, 33 play football, 23 play soccer, 12 play baseball and football, 3 play football and soccer, and 2 play all three sports. How many play baseball and soccer?
5. [10] For a concert, 57 tickets were sold for a total of $\$ 205$. If students paid $\$ 3$ and nonstudents paid $\$ 5$, how many student tickets were sold?
6. [15] Find the first two terms of an arithmetic sequence in which the fifth term is 4 and the eleventh term is -8 .
7. Suppose the letters A, B, C, D, E, F, G represent children on a playground, and an ordered pair (A, B) indicates that A is the sister of B. Answer the following questions based on the complete list of such ordered pairs below.

$$
\{(A, B),(A, C),(C, A),(C, B),(E, D),(F, G),(G, F)\}
$$

(a) [5] What letters represent boys?
(b) [5] Is this set of ordered pairs a function from the set of first components to the set of second components?
8. [20] (True/False.) For each of the following statements, write "T" if it is true and "F" if it is false. (You need not give counterexamples for false statements.)
(a) \qquad For all sets A, B : If $A-B=\emptyset$, then $A=B$.
(b) \qquad For all sets $A, B:(A-B) \cup A=A$.
(c) \qquad For all sets A, B, C : If $A \cup B=A \cup C$, then $B=C$.
(d) \qquad For all integers x and $y: \quad|x-y|=|y-x|$.
(e) \qquad For all integers $x: \quad|x|+|-x|=0$.

