Math 365 Exam 2 October 22, 2010 S. Witherspoon

Name
There are 8 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.
1. [10] Construct a truth table for the proposition $(\sim p) \vee q$.
2. Consider the following proposition about all integers x , y , and z . p : If $xy = xz$, then $y = z$.
(a) [5] Is p true? If not, give a counterexample.

(b) [5] State the converse of p. Is it true? If not, give a counterexample.

3.	How many one-to-one correspondences are there between the sets $\{a, b, c, d\}$ and $\{1, 2, 2, 2, 3, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	2, 3, 4
if		

(a) [5] in each correspondence, a must correspond to 4?

(b) [5] in each correspondence, a and b must each correspond to an even number?

4. [15] Of 86 children playing baseball, football, or soccer, 52 play baseball, 33 play football, 23 play soccer, 12 play baseball and football, 3 play football and soccer, and 2 play all three sports. How many play baseball and soccer?

5.	[10] For a	concert,	61	tickets	were	sold	for	a t	total	of	\$266.	If	students	paid	\$4	and
noi	nstudents p	oaid \$6, h	OW	many st	uden	t tick	ets	wei	re sol	d?						

6. [15] Find the first two terms of an arithmetic sequence in which the fourth term is 1 and the tenth term is -17.

7. Suppose the letters A, B, C, D, E, F, G represent children on a playground, and an ordered pair (B, A) indicates that B is the sister of A. Answer the following questions based on the complete list of such ordered pairs below.

$$\{(B,A), (B,C), (E,D), (F,G), (G,F)\}$$

(a) [5] What letters represent boys?

(b) [5] Is this set of ordered pairs a function from the set of first components to the set of second components?

8. [20] (**True/False.**) For each of the following statements, write "T" if it is true and "F" if it is false. (You need not give counterexamples for false statements.)

- (a) _____ For all sets A, B: If $A B = \emptyset$, then $A \subseteq B$.
- (b) _____ For all sets A, B, C: If $A \cup B = A \cup C$, then B = C.
- (c) _____ For all sets A, B: $(A B) \cup A = A$.
- (d) _____ For all integers a and b: |a-b| = |b-a|.
- (e) _____ For all integers a: |a| + |-a| = 0.