Math 365 Exam 3
 November 19, 2010
 S. Witherspoon

Name

There are 8 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [10] Short answer. For each, answer the following question, filling in the blank with "yes" or "no". Is the number 149,226 divisible by
2 \qquad
7 \qquad
\qquad
4 \qquad
5 \qquad
6 \qquad
8 \qquad
9 \qquad
10 \qquad
11 \qquad
2. (a) [9] Find the GCD for 380 and 440 using the Euclidean algorithm.
(b) [5] Find the LCM for 380 and 440.
(c) [5] Do any primes less than 23 divide the number $2 \cdot 3 \cdot 5 \cdot 7+11 \cdot 13 \cdot 17 \cdot 19$?
3. [10] Hot dogs come in packages of 10 , buns in packages of 8 , and paper plates in packages of 50 . What is the least number of hot dogs, buns, and plates that can be purchased so that there is an equal number of each?
4. [10] Fill in each of the blanks so that the answer is nonnegative and the least possible number:
(a) $23,573 \equiv$ \qquad $(\bmod 3)$
(b) $23,573 \equiv$ \qquad $(\bmod 11)$
5. [10] If a fraction is equal to $\frac{3}{5}$, and the sum of the numerator and denominator is 32 , what is the fraction?
6. [12] Find the simplest form for each of the following:
(a) $\left(\frac{2}{3}\right)^{3}+(-1)^{4} \div 9 \cdot \frac{1}{2}+3^{-2}$
(b) $\frac{a^{2}-a b}{a^{2}-b^{2}}$
7. [8] Which of the following represent terminating decimals? Circle all those that do.

$\frac{3}{2}$	$\frac{5}{3}$	$\frac{7}{5}$	$\frac{3}{8}$	$\frac{10}{38}$	$\frac{12}{60}$	$\frac{1}{120}$	$\frac{5}{256}$

8. [21] (True/False.) For each of the following statements, write "T" if it is true and "F" if it is false. (You need not give counterexamples for false statements.)
(a) \qquad For all integers n : If $3 \mid n$ and $5 \mid n$, then $15 \mid n$.
(b) \qquad For all integers n : If $4 \mid n$ and $6 \mid n$, then $24 \mid n$.
(c) \qquad For all integers a and b : If p is a prime and $p \mid a b$ then $p \mid a$ or $p \mid b$.
(d) \qquad For all integers a, b, and d : If $d \mid a b$, then $d \mid a$ or $d \mid b$.
(e) \qquad For all integers a, b, and d : If $d \mid(a+b)$, then $d \mid a$ or $d \mid b$.
\qquad For all integers a, b : If neither a nor b is even, then $\operatorname{GCD}(a, b) \neq 2$.
(g) \qquad For all nonzero rational numbers a, b and all integers m, n :

$$
a^{m} \cdot b^{n}=(a b)^{m n}
$$

