Math 365 Exam 1
 S. Witherspoon
 September 21, 2012

Name

There are 7 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [8 points] (a) Order the following Egyptian numerals from least to greatest:

$$
\cap \cap\|, \quad \cap \cap \cap, \cap ו\| \|
$$

(b) Without converting to decimals, add the following two Egyptian numerals. Briefly explain how you obtained your answer.

$$
\text { Пill, } \cap \text { пוIII }
$$

2. [16] (a) Each of the following illustrates a property of addition and/or multiplication of whole numbers. Identify the property illustrated.
$(2+3)+5=2+(3+5)$
$28 \cdot 1=28=1 \cdot 28$
$4 \cdot(10+2)=4 \cdot 10+4 \cdot 2$
(b) Identify two properties illustrated by the following.

$$
2 \cdot(19 \cdot 50)=(2 \cdot 50) \cdot 19
$$

3. [20] Perform each of the operations in base 5, without converting to base 10. Show your work. (If you wish to convert to base 10, to check your answers only, that is fine.)
(a) $11_{\text {five }}+24_{\text {five }}$
(b) $32_{\text {five }}-13_{\text {five }}$
(c) $12_{\text {five }} \cdot 23_{\text {five }}$
(d) $41_{\text {five }} \div 3$ five
4. [12] Vera calculated the following. Redo the calculation correctly, and write a sentence explaining to Vera where she made a mistake, and how to fix her calculation.
5. [16] In each of the following, identify the sequence as arithmetic or geometric, and find the nth term.
(a) $5,11,17,23,29, \ldots$
(b) $2,6,18,54,162, \ldots$
6. [12] Without computing each sum, find which is greater, S or T, and by how much.

$$
\begin{aligned}
& S=3+6+9+12+\cdots+99 \\
& T=5+8+11+14+\cdots+101
\end{aligned}
$$

7. [16] (True/False and Counterexample.) For each of the following statements, write " T " if it is true and " F " if it is false. If it is false, give a counterexample.
(a) For all whole numbers $n, \frac{n+3}{3}=n$.
(b) \qquad For all whole numbers $n, \quad n+3=3+n$.
(c) \qquad For all whole numbers $n, \quad(n+1)^{3}=n^{3}+1^{3}$.
(d) \qquad For all whole numbers $n, \quad \frac{3 n}{3}=n$.
