Math 365 Exam 3
 November 16, 2012
 S. Witherspoon

Name
There are 8 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [15] Find the sum of the first 100 terms of the arithmetic sequence whose nth term is $5-3 n$.
2. (a) [5] Daniel attempts to do a division problem as follows:

$$
\frac{3}{4} \div \frac{1}{8}
$$

Correct Daniel's mistake and explain what you would tell him.
(b) [5] Chelsea argues that the following number is not rational since it is not the quotient of two integers:

Is Chelsea correct? Explain in detail why or why not.
3. [15] Convert the following repeating decimal to a fraction (you need not simplify): $10.2 \overline{41}$
4. [20] Write each of the following in simplest form:
(a) $\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{2}{3}\right)^{2}$
(b) $2 \frac{2}{5} \div \frac{3}{5}$
(c) $3^{-5} \div 3^{-6}$
(d) $1.2 \overline{1}+2.1 \overline{2}$
5. [5] (a) Which of the following represent terminating (i.e. finite) decimals? Circle all those that do.

$$
\frac{21}{20} \quad \frac{25}{9} \quad \frac{9}{24} \quad \frac{3 \cdot 5}{2^{4} \cdot 5^{2}} \quad \frac{3^{2} \cdot 17}{2^{3} \cdot 3^{5}}
$$

(b) [5] Order the following decimals from least to greatest:
0.123
$0.12 \overline{3}$
$0.1 \overline{23}$
$0 . \overline{123}$
6. [10] Find the sum $1+\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+\cdots$
7. [5] If the fraction $\frac{1}{23}$ is expressed as a repeating decimal, what is the maximum possible period? (You need not find the decimal.) Explain how you determined your answer.
8. [15] (True/False.) For each of the following statements, write "T" if it is true and "F" if it is false. (You need not give counterexamples for false statements.)
(a) \qquad For all integers x and $y, \quad|x+y|=|x|+|y|$.
(b) \qquad The set of nonzero integers is closed under multiplication.
(c) \qquad The set of nonzero integers is closed under division.
(d) \qquad The set of nonzero rational numbers is closed under division.
(e) \qquad Division of rational numbers is commutative.
\qquad $0 . \overline{9}<1$

