Math 365 Final Exam
 December 10, 2012
 S. Witherspoon

Name
There are 14 questions, for a total of 100 points. Point values are written beside each question. No calculators allowed. Show your work for full credit.

1. [8 points] Calculate the following in base 5 . Show all work in base five (not just a conversion to base ten and back).
(a) $2013_{\text {five }}-142_{\text {five }}$
(b) $21_{\text {five }} \cdot 34_{\text {five }}$
2. [6] Without computing each sum, find which is greater, S or T, and by how much:

$$
\begin{aligned}
& S=1+4+9+16+\cdots+10,000 \\
& T=2+5+10+17+\cdots+10,001
\end{aligned}
$$

3. [8] Consider the following proposition about all whole numbers n.

$$
p: \text { If } n \text { is a multiple of } 4 \text {, then } n \text { is even. }
$$

(a) Is p true? If not, give a counterexample.
(b) State the converse of p. Is it true? If not, give a counterexample.
4. [6] How many one-to-one correspondences are there between the sets $\{1,2,3,4,5,6\}$ and $\{a, b, c, d, e, f\}$ if in each correspondence, each multiple of 3 must correspond to a vowel?
5. [6] Find a digit to fill in the blank, if possible, so that the number
\qquad
is divisible by
(a) 4
(b) 9
(c) 11
6. [8] Write each of the following in simplest form:
(a) $6^{-5} \cdot 6^{7} \div 2^{3}$
(b) $3 \frac{1}{3} \div \frac{2}{9}$
7. [7] Which of the following are rational numbers? Circle all those that are.

$$
\begin{array}{ccccccc}
\frac{2}{5} & \frac{10}{21} & 3.14 & \pi & \sqrt{96} & \sqrt{196} & \frac{\sqrt{2}}{2}-\frac{1}{\sqrt{2}}
\end{array}
$$

8. [10] Convert the following repeating decimal to a fraction (you need not simplify):

$$
3.2 \overline{15}
$$

9. [6] Eighteen-karat gold contains 18 parts gold and 6 parts other metals. If a ring contains 12 parts gold and 3 parts other metals, is it 18 -karat gold? Justify your answer.
10. [6] Find the sum $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots$
11. [10] In an arithmetic sequence, the sum of the 11 th and 21 st terms is 94 . The 21st term minus the 11th term is 30 . Find the first term of the sequence.
12. [6] For a particular event, 250 tickets were sold, for a total of $\$ 1,500$. If students paid $\$ 5$ per ticket and nonstudents paid $\$ 10$ per ticket, how many student tickets were sold?
13. [6] For each of the following sequences (either arithmetic or geometric), find a function $f(n)$ whose domain is the set of natural numbers, and whose outputs are the terms of the sequence.
(a) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \ldots$
(b) $10,3,-4,-11, \ldots$
14. [7] (True/False.) For each of the following statements, write "T" if it is true and "F" if it is false. (You need not give counterexamples for false statements.)
(a) \qquad For all sets A, B, C, if $A \cup B=A \cup C$, then $B=C$.
(b) \qquad For all integers a and b, if both a and b are even, then $\operatorname{GCD}(a, b)=2$.
(c) \qquad For all integers a and b, if b divides a, then b divides $a+b$.
(d) \qquad For all integers a, b, and prime numbers p, if p divides $a b$, then p divides a or p divides b.
(e) \qquad For all integers a and $b,|a-b|=|b-a|$.
(f) \qquad The sum of any two irrational numbers is an irrational number.
(g)
$0 . \overline{3}=\frac{1}{3}$
