Math 365 Partial solutions to Exam 1

1. $201_{\text {five }}+324_{\text {five }}+1042_{\text {five }}=2122_{\text {five }}, 10000_{\text {five }}-2122_{\text {five }}=2323_{\text {five }}$
2. seven; eleven or twelve (or higher)
3. $121_{\text {four }}=1 \cdot 4^{2}+2 \cdot 4+1=2^{4}+2^{3}+1=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2+1=11001_{\text {two }}$
4. (a) Distributivity of multiplication over addition
(b) Associativity of multiplicaiton
5. In Tara's first step, she found $57-49=8$, which is larger than 7 . The remainder should be smaller than the divisor 7 . Therefore she should have started with $8 \cdot 7=56$ instead of $7 \cdot 7=49$, and continued from there.
6. There are 20 terms: This is the sum of an arithmetic sequence with $a_{1}=12$ and $d=5$. The last term is $107=12+21 \cdot 5$, using the standard form for terms in an arithemtic sequence, and so $n-1=21$, that is, $n=20$. The sum of the first and last terms is $12+107=119$. Pairing the terms, there are $20 / 2=10$ pairs, and we then find the sum of all the terms is $119 \cdot 10=1190$.
7. (a) 324,$972 ; 4 \cdot 3^{n-1}$ (geometric sequence, $r=3, a_{1}=4$)
(b) 15,$21 ; \frac{n(n+1)}{2}$ (triangular numbers, formula from class)
8. (a) \mathbf{T}
(b) \mathbf{F}; Counterexample: $a=10, b=5, c=1$
$(10-5)+1=6,10-(5+1)=4$ (many other counterexamples are possible)
(c) \mathbf{F}; Counterexample: $a=2, b=1, c=1$
$2 \cdot 1+1=3,2 \cdot(1+1)=4$ (many other counterexamples are possible)
(d) \mathbf{F}; Counterexample: $c=0(0 \div 0$ is undefined $)$
