Math 365 Partial solutions to Exam 2

1. (a) No. Counterexample: $\mathrm{n}=6$. (There are many other counterexamples possible.)
(b) If $12 \mid n$, then $2 \mid n$ and $6 \mid n$. True.
2. (a) $5 \cdot 4 \cdot 3 \cdot 2=120$
(b) $3 \cdot 2 \cdot 3 \cdot 2=36$
3. For this problem, a Venn diagram is very helpful, and alternative methods of solution can be based on a diagram. The solution here is based on known relations among cardinalities of sets.
(a) Let A denote the set of survey respondents owning an American car, and let J denote the set of those owning a Japanese car. Then $n(A \cup J)=110-12=98$, and so

$$
\begin{aligned}
n(A \cup J) & =n(A)+n(J)-n(A \cap J) \\
98 & =73+39-n(A \cap J)
\end{aligned}
$$

and it follows that $n(A \cap J)=14$.
(b) Let G denote the set of survey respondents owning a German car. From the given information, we have $n(A \cup J \cup G)=107, n(A \cap G)=8$, and $n(J \cap G)=0$, and from this it also follows that $n(A \cap J \cap G)=0$. So

$$
\begin{aligned}
n(A \cup J \cup G) & =n(A)+n(J)+n(G)-n(A \cap J)-n(A \cap G)-n(J \cap G)+n(A \cap J \cap G) \\
107 & =73+39+n(G)-14-8-0+0
\end{aligned}
$$

and from this it follows that $n(G)=17$.
4. (a) Same: $224 \cdot 5=112 \cdot 2 \cdot 5=112 \cdot 10$
(b) Not the same: $14,800-99=(14,800+1)-(99+1)=14,801-100$, which is not the same as $14,799-100$ (in each expression, 100 is subtracted from a number, but those numbers are different).
5.

$$
\begin{array}{llll}
3 & \underline{2,5,8} & & 4 \\
& \underline{0,2,4,6,8} \\
9 & \underline{5} & 11 & \underline{7}
\end{array}
$$

6.

97 is prime (check it is not divisible by $2,3,5,7$, and this suffices, as $\sqrt{97}<\sqrt{100}=10$, and these are all the prime numbers less than 10)

187 is composite (as it is divisible by 11)
$2^{7}-1$ is prime (it is equal to 127 , and again one can check divisibility by primes less than or equal to $\sqrt{127}<\sqrt{144}=12$)
$19 \cdot 23+23 \cdot 89$ is composite (since 23 is a factor of each term, it is a factor of the number, specifically, the number is equal to $23 \cdot(19+89)=23 \cdot 108)$
$19!+17$ is composite (Since $19!=19 \cdot 18 \cdot 17 \cdot 16 \cdots 3 \cdot 2 \cdot 1$, the number 17 is a factor of each term of the number, specifically, the number is equal to $17 \cdot(19 \cdot 18 \cdot 16 \cdots 3 \cdot 2 \cdot 1+1)$)
7. (a)

$$
\begin{aligned}
& 91=35 \cdot 2+21 \\
& 35=21 \cdot 1+14 \\
& 21=14 \cdot 1+7 \\
& 14=7 \cdot 2
\end{aligned}
$$

So $\operatorname{GCD}(91,35)=7$ (the last nonzero remainder above)
(b) $\operatorname{LCM}(91,35)=\frac{91 \cdot 35}{7}=\frac{91 \cdot 5 \cdot 7}{7}=91 \cdot 5=455$
8. (a) True
(b) False. Counterexample: $A=\{1,2,3\}, B=\{3,4,5\}, C=\{3,4\}$. Then $A \cap B=$ $\{3\}=A \cap C$, but $B \neq C$. (Many other counterexamples are possible.)
(c) False. Counterexample: $n=21$ (n is divisible by 3 , but each digit of n is not)
(d) False. Counterexample: $a=2, b=4, d=8$ (then d divides $2 \cdot 4=8$ but d does not divide 2 nor 4)
(e) True.

