Math 365 Partial solutions to Exam 3

1. (a) $-5,-8$

This is an arithmetic sequence with first term $a_{1}=7$ and common difference $d=-3$, so the nth term is $7+(n-1)(-3)$, which simplifies to $10-3 n$.
(b) $\frac{1}{32}, \frac{-1}{64}$

This is a geometric sequence with first term $a_{1}=\frac{1}{2}$ and common ratio $\frac{-1}{2}$, so the nth term is $\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)^{n-1}$, which may be rewritten as $\frac{(-1)^{n-1}}{2^{n}}$.
2. (a) $\frac{1}{4}<\frac{7}{12}<\frac{7}{11}<\frac{7}{10}<\frac{4}{5}$
(b) $2 . \overline{23}<2.2 \overline{3}<2.3<2.3 \overline{2}<2 . \overline{3}$
3. (a) $2 \frac{1}{2} \div \frac{3}{4}-\left(\frac{3}{2}\right)^{-2}=\frac{5}{2} \cdot \frac{4}{3}-\frac{1}{(3 / 2)^{2}}=\frac{10}{3}-\frac{1}{9 / 4}=\frac{10}{3}-\frac{4}{9}$, which is $\frac{30}{9}-\frac{4}{9}=\frac{26}{9}$ or $2 \frac{8}{9}$
(b) $\frac{1}{a c}+\frac{1}{a b}=\frac{b}{a b c}+\frac{c}{a b c}=\frac{b+c}{a b c}$
4. Since $\frac{1}{4} \mathrm{~cm}$ represents 5 km , we find, by multiplying by 4 , that 1 cm represents 20 km . Then, by multiplying by 7 , we find that 7 cm represents $(20)(7)=140 \mathrm{~km}$. Thus the two cities are 140 km apart.
5. $\frac{11}{40}, \frac{5}{64}, \frac{12}{75}$ (When written in simplest form, these are the fractions for which the prime factorization of the denominator contains no primes other than 2 or 5 . See Theorem $7-1$ on p. 338 of the text. Note that $\frac{12}{75}=\frac{4}{25}$.)
6. (a) 0.375
(b) $0 . \overline{01}$
7. (a) $\frac{105}{1000}=\frac{21}{200}$
(b) Let $n=0 . \overline{15}=0.151515 \ldots$ Then

$$
\begin{aligned}
100 n & =15.151515 \ldots \\
-\quad n & =0.151515 \ldots \\
\hline 99 n & =15
\end{aligned}
$$

Therefore $n=\frac{15}{99}=\frac{5}{33}$.
(c) Let $n=4.3 \overline{15}=4.3151515 \ldots$ Then

$$
\begin{aligned}
100 n & =431.5151515 \ldots \\
-\quad n & =4.3151515 \ldots \\
\hline 99 n & =427.2
\end{aligned}
$$

Therefore $n=\frac{427.2}{99}=\frac{4272}{990}=\frac{712}{165}$.
8. (a) False. Counterexample: Let $a=2, b=1, c=3$. Then $a-b+c=2-1+3=1+3=4$ (or you can think of this as $2+(-1)+3)$ and $a-(b+c)=2-(1+3)=2-4=-4$. (Many other counterexamples are possible. Note that the equation will be true whenever $c=0$, however.)
(b) True. (Remember that the set of integers is the set $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$. If you take any two elements from this set, and subtract one from the other, you will get another element of this set.)
(c) False. Counterexample: Let $a=1, b=2, c=3$. Then $\frac{a+b}{a+c}=\frac{1+2}{1+3}=\frac{3}{4}$ and $\frac{b}{c}=\frac{2}{3}$.
(d) True. (Since $\frac{a b+b c}{b}=\frac{b(a+c)}{b}=a+c$.)
(e) False. Counterexample: $\frac{1}{3}$ is a rational number that cannot be written as a finite decimal. (Remember that a rational number is a number that is equal to a quotient of two integers, that is, $\frac{a}{b}$ where a, b are integers and $b \neq 0$.)
(f) True. (The technique used in \#7 converts repeating decimals to quotients of integers. In this way, you can see that they are all rational numbers.)

