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CHAPTER 1
INTRODUCTION

The quantum double of a Hopf algebra, also called the Drinfel’d double, was
defined by Drinfel’d in the context of finding solutions to the quantum Yang-Baxter
equation of statistical mechanics [10]. The special case of the quantum double D(G) of
a finite group G lends itself to study by group-theoretic methods, and has implications
for group theory. The representations of D(G) over the complex numbers arise in the
study of holomorphic orbifold models in conformal field theory [9, 12], as well as
in applications to moonshine, that is the connection between the representations of
finite groups and modular functions. An explicit description of representations for
D(G) is anticipated in a paper of Lusztig on characters of Hecke algebras [11]. Bantay
developed the complex character theory, similar to that of a finite group, of a more
general algebra than the quantum double D(G) which has application to generalized
Thompson series and moonshine [3]. In this thesis, we present some results about
the representations of the quantum double over algebraically closed fields of arbitrary
characteristic.

The quantum double D(G) is a skew group algebra. It is the smash product
of the group algebra k@, where k is a field, with its Hopf algebraic dual (kG)*. This
construction is analogous to a semidirect product of groups; it provides an algebraic
structure on the vector space (kG)* ® kG. The algebra D(@) may be given the tensor
product coalgebra structure, and in this way it becomes a Hopf algebra.

In Chapter 2 we give details and state various properties of the quantum
double D(G) of a finite group. For example, we show that D(G) is a symmetric alge-
bra. We prove that D(G) is semisimple if and only if the order of G is invertible in k;
this was proved in [12] by a different approach. We also make a simple observation

which shows that the cohomology groups of D(G) are isomorphic to those of kG.




As D(G) is a Hopf algebra, it has a representation ring R(D(G)). This is
the C-algebra generated by isomorphism classes of finite dimensional D(G)-modules
with direct sum for addition and tensor product for multiplication. In fact, this ring
is commutative, as we show in Chapter 2.

In Chapter 3, we consider G-equivariant k-vector bundles on finite G-sets;
these are analogous to the G-equivariant C-vector bundles appearing in [11]. We
conclude an equivalence of the category of D(G)-modules with the category of G-
equivariant vector bundles on the G-set G (under the conjugation action) from a
more general equivalence given in Theorem 3.2.2. We deduce the well-known result
that the indecomposable D(G)-modules are indexed by pairs (U,g) where g is a
representative of a conjugacy class of G and U is an indecomposable kC (g9)-module.
Here C(g) = Cgs(g) denotes the centralizer of g in G. Different approaches to this
result appear in [7, 12]; see also [9] for the special case k = C. The equivalence of
categories also leads to an isomorphism of representation rings, providing an alternate
description of the representation ring R(D(G)) analogous to a ring considered by
Lusztig when k£ = C [11]. This description facilitates proofs in Chapters 4 and 5.

In Chapter 4, we examine the representation ring R(D(G)) of the quantum
double using an approach similar to that taken by Benson and Parker in examining
the representation ring R(G), or Green ring, of the group algebra kG [5]. They devel-
oped a theory of characters of the Green ring R(G), that is algebra homomorphisms
from R(G) to C. These characters are called “species” in order to distinguish them
from characters of the group. Species provide an extension of the concept of Brauer
characters of the group; there are certain species which correspond to the Brauer
characters, and in general there are other species as well.

We prove two main results in Chapter 4 concerning the characters of the
representation ring R(D(G)) of the quantum double. The first, Theorem 4.2.4, is
a formula for characters of R(D(G)) given characters, or species, of the Green ring
R(G). For the second, Theorem 4.3.2, we assume the characteristic of k is prime. This

result uses the characters obtained in Theorem 4.2.4 from the Brauer characters of the




group to prove that the Grothendieck ring, which is the quotient of the representation
ring R(D(G)) by the ideal of short exact sequences, is semisimple.

Theorem 4.3.2 is analogous to a theorem of Brauer which essentially states
that the Grothendieck ring of k¥G-modules is semisimple, with a complete set of
characters given by the columns of the Brauer character table [4]. The values in this
table characterize kG-modules up to composition factors. Similarly, Theorem 4.3.2
allows us to write down a character table that characterizes D(G)-modules by their
composition factors.

Theorem 4.2.4, while used as a lemma for Theorem 4.3.2, is also of more
general interest. If the characteristic p of k is a prime dividing the order of the
group G, there are in general species other than those corresponding to the Brauer
characters [5]. Thus species are a finer invariant than are the Brauer characters
for kG-modules, and Theorem 4.2.4 provides for a correspondingly finer invariant of
D(G)-modules than that indicated by Theorem 4.3.2.

In Chapter 5, we show that there are certain Hopf subalgebras of D(G),
indexed by the subgroups of G, such that the collection of their representation rings
constitutes a Green functor. Thévenaz’ twin functor construction [16] then leads to
a direct sum decomposition of the representation ring R(D(G)) in Theorem 5.2.3
analogous to a similar decomposition of the Green ring. This decomposition provides
an immediate proof of an induction theorem (Corollary 5.2.4), and a connection
between the questions of semisimplicity of R(D(G)) and questions of semisimplicity
of the Green ring R(G) (Corollary 5.2.5). Finally, the decomposition in Theorem
5.2.3 yields a proof that the characters of the representation ring R(D(G)) described
in Chapter 4 are all of its characters (Theorem 5.3.2).

We refer the reader to [1] for basic results about representations of finite
groups and finite dimensional algebras, to [13] or [15] for standard definitions and
results regarding Hopf algebras, and to [4] for basic results about Brauer characters
and group cohomology. Results about Green functors (or algebra G-functors) may
be found in [16]. The term “Green functor” appears to be the one accepted today.

Results about species may be found in [5].




CHAPTER 2
DEFINITIONS AND PRELIMINARY RESULTS

Let G be a finite group and k an algebraically closed field of characteristic p-
All modules will be right modules, finite dimensional over &. Tensor products will be

over k unless otherwise indicated.

2.1. Definitions of the quantum double D(G)

We shall give two definitions of the quantum double D(G) of the group G. Let
(kG)* = Homy(kG, k) be the k-algebra on the space dual to kG with multiplication
pointwise on group elements, that is (ff)9) = f(g)f'(g) for all f, f € (kG)* and
g € G. We give the vector space (kG)* ® kG an algebra structure as follows. The
group G acts as automorphisms of (kG)* by

fi(z) = fgzg™?)

for all g,z € G and f € (kG)*. Multiplication on (kG)* ® kG may then be defined
by
(feN(f' ®d) =" @4,

for all f, f € (kG)* and g,¢’ € G. The resulting algebra is the quantum double D(G)
of G. Both kG and (kG)* are naturally embedded as subalgebras of D(G).

The group algebra kG is a Hopf algebra (13, 15] with coproduct A : kG —
kG ® kG defined by

Alg)=9®yg

(that is, g is a group-like element), counit € : kG — k by €(g) = 1, and coinverse
s : kG — kG by s(g) = g7, for all elements g of G. We give (kG)* the dual




Hopf algebra structure. Then D(G) becomes a Hopf algebra with the tensor product
coalgebra structure, and algebra structure as defined above.

We next exhibit the Hopf algebraic structure of D(@Q) explicitly on the nat-
ural basis; the following may be taken as an alternative definition of the quantum
double D(G) of the group G. If {¢g},eq is the basis of (kG)* dual to {9}sec, then
D(G) has as a basis all elements ¢, ® h, which we write more simply as ¢,h, for
g,k € G. On this basis, the product is defined by ¢ghdgh' = ¢yépyp-1hh’, which is
nonzero if and only if g = hg’h~!. Thus the identity is 1 D(G) = X4eq Pg1, where 1 is
the identity for G. The coproduct is given by

A(dgh) = Y ¢oh ® po14h,

z€d
the counit by €(¢yh) = &1 4, and the coinverse by s(¢,h) = h~l¢g-1 = gp-15-1,h~2.

2.2. Representation rings

We next discuss representation rings and fix notation. If A is any Hopf
algebra, the tensor product U ® V of two right A-modules I/ and V is given the
structure of a right A-module by restricting the natural action of AQ Aon UQV via
the coproduct A : A — A® A. This is a right A-module action since A is an algebra
homomorphism. The field & is given the structure of a right A-module by restriction
of the action of k on itself by right multiplication to A via the counit ¢ : A — k. In
other words, an element a € A acts on k as multiplication by €(a). This is called
the ¢rivial module. Up to isomorphism, the trivial module is a multiplicative identity
with respect to tensor product of modules; this follows from the counit property of
Hopf algebras.

Let r(A) denote the ring generated by isomorphism classes of A-modules

with direct sum for addition and tensor product for multiplication, that is
Ul+[VI=[U®V] and [U]-[V]= U V],

where [U] denotes the isomorphism class of the A-module U. Then r(A) is a ring

with identity given by the isomorphism class of the trivial module. Associativity of




r(A) follows from coassociativity of the coproduct for A. We shall refer to both r(A)
and R(A) = r(A) ®z C as representation rings. We shall work primarily with R(A),
as our main interest is in characters. By abuse of language and notation, we shall
consider A-modules to be elements of the representation rings, when we really mean
their isomorphism classes.

We next define the “ideal of short exact sequences” Ry(A) of the represen-
tation ring R(A). Let Ro(A) be the ideal of R(A) generated by elements of the form
U—U'—-U" where

00U —-U—-U"-0

is a short exact sequence of A-modules. The Grothendieck ring of A is the quotient
R(A) = R(A)/Ro(A).

Returning to the situation of the quantum double, let H be a subgroup of
the finite group G. We note that the natural embedding of the group algebra kH
as a subalgebra of D(G) is also an embedding of Hopf algebras. Thus we have the
following lemma, where R(H) = R(kH) is the representation ring, or Green ring, of

the group algebra kH.

Lemma 2.2.1 Restriction of action from D(G) to kH defines an algebra homomor-

phism on the corresponding representation rings,
resg® : R(D(G)) — R(H). O

We shall sometimes consider a D(G)-module to be a kH-module via resg(G),
and may not explicitly state that we are using the restriction map.

The quantum double D(A) of any Hopf algebra A is quasitriangular [10, 13].
That is, there exists an invertible element R of D(A) ® D(A) such that RA(z)R™! =
o(A(z)) for all z € D(A), where A is the coproduct of D(A), and o is the twist
automorphism interchanging two factors. For the quantum double D(G) of a finite
group G, we have B = 3 o4, ® g, with R™! = YsecPs @ g7'. The equation
RAR™ = oA results in an isomorphism between U @ V and V ® U, for any two




modules U and V, given by the twist o followed by the action of R. We prove this

isomorphism for the special case D(G) in the following lemma.

Lemma 2.2.2 Given any two D(G)-modules U and V, the D(G)-modules U®V and

V®U are isomorphic. In particular, the representation ring R(D(G)) is commutative.

Proof: Let f be the map from U®V to V ® U given by the twist o followed
by the natural action of R = ¥ )cq ¢,®g on VQU. As both operations are invertible,
f is a bijection. It remains to check that f is a D(G)-map. Let w € U, v € V, and
g,h € G. Then

Il

flu®v)d,h ( E vd, ® uz) dgh

2€G

Z Vo, 0yh ® uzdy-1,h

z,y€G

= Z Vo, h @ uzg,-1,h

2€G

= Y vé.h ® udy,-1zh.
z€G

On the other hand,

f((u®v)dgh) Z f(udsh @ véy-14h)

zeG

= Z v¢z‘19h¢y & u¢zhy

z,y€G

- Z v¢x—1g¢hyh"1 h ® u¢zhy

z,y€G
= E v¢hyh"1 h® u¢ghy‘1h'1 hy

yeEG

Resumming over z = hyh~1, we find that

f((u@v)pgh) = vh.h @ udy-1zh = f(u®v)dgh. O

zeG




2.3. Properties of D(G)

We next discuss various properties of the algebra D(G), some of which will
be used in the sequel.

The algebra D(G) is a skew group algebra, and thus it is a fully group-
graded algebra (or strongly group-graded algebra) [14]. This fact will be useful in
Chapter 5. In particular, for each subgroup H of G, there is a subalgebra

Do(H)= 3 kg

g€G,heH

We choose this notation in accordance with that in the next chapter; note that
Dg(G) = D(G). The coalgebra structure of D(G) restricts to a coalgebra struc-
ture on each subalgebra Dg(H), so that Dg(H) is in fact a Hopf subalgebra of D(G).
It is useful to notice that for any two subgroups L < H of G, we have an isomorphism
of left Dg(L)-modules

De(H)~ S Dg(L)h,
heL\H

with Dg(L)h ~ Dg(L) as a left Dg(L)-module for each right coset representative h
of L\H. That is, Dg(H) is a free left Dg(L)-module.

We caution that while the representation ring R(D(G)) is commutative by
Lemma 2.2.2, the representation ring R(Dg(H)), for H a proper subgroup of G,
may not be commutative. In particular, for the identity subgroup H = 1, the Hopf
subalgebra Dg(H) is simply (kG)*. The indecomposable (kG)*-modules are all the
spaces k¢, for ¢ € G, the tensor product of two such modules corresponding to the
product in G.

Larson and Sweedler proved that all finite dimensional Hopf algebras are
Frobenius algebras (see [13], Theorem 2.1.3). The bilinear form provided in the proof
of that theorem for the case of the quantum double D(G) turns out to be symmetric
as well. In the proof of the next lemma, we define this bilinear form without reference

to the background in [13]. The lemma will not be needed in this thesis.

Lemma 2.3.1 The quantum double D(G) of a finite group G is a symmetric algebra.




Proof: Define a linear map 7 : D(G) — k by requiring that 7(¢sh) = 61 4.
Define a pairing by '
(z,y) = 7(zy),
for all ,y € D(G). This pairing is clearly bilinear. On the standard basis elements
of D(G), we have

(¢gh, ¢ylh') = T(¢gh¢glh') = 6g,hglh—1 61,hhl.

If we let qug_iz = ¢p-1,nh71, then 5;11 is the unique standard basis element whose
pairing with @,k is nonzero. Thus the form is nondegenerate. It is symmetric since
~ is an involution. The definition of the pairing as the composition of the product
map with 7 results in its associativity, that is (z,yz) = (zy, 2) for all z,y,z € D(G).
Thus we have a nondegenerate symmetric associative bilinear form on D(G), and

D(G) is a symmetric algebra. O

In case k = C, we point out that the Z-span of {¢sh}srec in D(G) is a
based ring [11], with 7 : ¥, 1cq Zpsh — Z given by 7(¢yh) = 614 and involution
$h = hl¢, = Pr-1gnh~", as in the lemma. In this case it follows that D(G)
is semisimple [11], as was noted in [9]. Theorem 2.3.3 below gives a criterion for

semisimplicity in the general case. We shall use the following lemma.

Lemma 2.3.2 Let U be a D(G)-module and V a D(G)-submodule of U which is a
direct summand of U as a kG-module. Then V is a D(G)-direct summand of U.

Proof: Let 7 : U — V denote a kG-module projection of U onto V. Define
T:U—>Vby7T(u) =Y cqm(udy)d, for all u € U.
If v € V, then T(v) = Y jeqm(vdy)bg = Ygeq vPedy = v, as V is a D(G)-
module and Y g ¢, = 1. Thus 7 is the identity on V.
It remains to show that 7 is a D(G)-module map. If u € U and ¢', 1’ € G,
then
T(u)ggh = Z T (ugg)pybyrh’

'1e
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= 7"(“¢g’)¢g'hl.
= w(udgh')Pp—14p
= 3 w(udybugn-1h)g,

9€G

= Z 7(udgrh'dg) by

geaq

= T(udyh’). O

In the next result, we shall make use of the trivial D(G)-module &, on which
a basis element ¢,h of D(G) acts as multiplication by e(@gh) = 61,4. Its proof is
adapted from the proof of Maschke’s Theorem given in [1, p. 12]. The “if” part also

follows from Maschke’s Theorem for crossed products [14].

Theorem 2.3.3 The algebra D(G) is semisimple if and only if the characteristic p
of k does not divide the order |G| of G.

Proof: Assume first that p does not divide |G|. Let U be a D(G)-module,
and V a D(Q@)-submodule of U. It suffices to prove that V is a direct summand of U.
Restricting to kG, we see that V is a kG-submodule of U. As p does not divide |G|,
Maschke’s Theorem states that kG is semisimple, and so V is a kG-direct summand
of U. By Lemma 2.3.2, V is then a D(G)-direct summand of U.

Conversely, suppose that p does divide |G|. If D(G) were semisimple, then
the one dimensional trivial D(G)-module k would appear once in a decomposition of
D(QG) into a direct sum of irreducible D(G)-modules. In particular, any composition
series of D(G) would contain exactly one composition factor isomorphic with k.

As the counit € : D(G) — k is an algebra homomorphism, Ker(¢) is an
ideal of D(G). Thus it is a right submodule of D(G). We claim that the module
D(G)/Ker(e) is isomorphic to the trivial module: Note that 1p) = Xsea @l €
D(G) —.Ker(e), and

1pe) + Ker(e), ifg=1

1 o, h =1 + h—1 €
D(G) * Py pG) + (44 D(G)) {Ker(e), g1
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On the other hand, consider the element t = 3° ¢ $19. As p divides |G|,
we have t € Ker(e). Also if ¢', b’ € G, then '

t- ¢g1h’ = 51,glt = €(¢g/h')t,

so kt is a submodule of D(G) which is also isomorphic to the trivial module. Thus

we have a series of submodules,
D(G) > Ker(€) D kt D 0,

whose refinement to a composition series contains the trivial module more than once

as a composition factor. {J

There are other proofs of Theorem 2.3.3. For example, see [12]. Alterna-
tively, the theorem follows directly from Maschke’s Theorem for finite dimensional
Hopf algebras, which states that a finite dimensional Hopf algebra A is semisimple if
and only if €(t) # 0 for some t € [} [13, 15]. The set of right integrals [} is the set of
all t € A such that t - a = €(a)t for all @ € A. In the case A = D(G), we may take
t =3 e $19, so that €(t) =|G|.

We finally make a simple observation which results in a proof that the co-
homology groups of the quantum double D(G) and of the group algebra kG are
isomorphic. This result will not be needed in the sequel.

We may embed kG as an ideal direct summand of D(G) in the following
way. Denote by D(G); the subspace Y cqkd1g of D(G). Then D(G), is an ideal
direct summand of D(G), with complement the ideal 3", e 21 k¢gh. Further, D(G),
is isomorphic to kG as an algebra. In this way, kG-modules have D(G)-module
structures in which projective kG-modules become projective D(G)-modules. We
write inclg,; for this map, which takes a kG-module U to the D(G)-module on the
vector space U with ¢ h acting as h if g = 1 and as 0 otherwise. The map inclg; may
be extended to a functor embedding the category of kG-modules as a full subcategory
of the category of D(G)-modules. Note also that the trivial D(G)-module is the image

of the trivial kG-module under inclg .




12

Lemma 2.3.4 For each natural number n, the cohomology groups H*(D(QG), k) and
H™(G, k) are isomorphic.

Proof: Consider k to be the trivial kG-module, and let
viem P> P—>k—>0

be a projective resolution of k. By the above observation, we may apply the functor
inclg; to obtain a projective resolution of the trivial D(G)-module inclg (k) (which

we also denote by k). Further, the resulting Hom sequences
0 — Homg(k,k) — Homyg(Po, k) — Homyg(Pi, k) — ...,
and
0 — Homp(g)(k, k) = Hompg)(inclg1(Fo), k) = Homp(g)(inclg,1(Pr), k) — ...,

are isomorphic as complexes. Thus the cohomology groups H*(G, k) and H*(D(G), k)

computed from these sequences are isomorphic. O

We may extend the idea of embedding kG as an ideal direct summand of
D(G) to obtain a decomposition of D(G) into a direct sum of ideals indexed by the
conjugacy classes of G, an approach taken in [12] to characterize D(G)-modules. We

shall take a slightly different approach in the next chapter.




CHAPTER 3
G-EQUIVARIANT VECTOR BUNDLES

In this chapter, we consider G-equivariant k-vector bundles on finite G-
sets. These are analogous to the G-equivariant complex vector bundles on finite sets
discussed by Lusztig in [11]. The utility of vector bundles in the study of the quantum
double D(G) is indicated by the result that D(G)-modules are essentially G-vector
bundles on the G-set G under the conjugation action (Theorem 3.2.2).

3.1. Vector bundles and the algebra Dx(G)

Fix a finite right G-set X. A G-equivariant k-vector bundle U on X is a
collection of finite dimensional vector spaces {U; }ex, together with a representation
of G on their direct sum Y, ¢ x U, such that U, g = Uze. We call U, the z-component
or fiber of U. If u is an element of the kG-module Y . x U,, we write u = Y cx U,
where u, € U, for each z € X.

If U and V are G-vector bundles on X, a morphism f : U — V is a kG-
module map f : Y cx Uy = Y zex Vo which preserves fibers, that is f(U,;) € V; for
all z € X. Note that a morphism is determined by its action on the z-components,
where z ranges over a set of representatives of orbits of G on X. An isomorphismis an
invertible morphism. The direct sum of two G-vector bundles on X is the G-vector
bundle whose z-component is the direct sum of the z-components of the original
modules for each z € X. This is the product in the category of G-vector bundles
on X.

The underlying kG-module Y cx U, of a G-vector bundle U on X may be

decomposed into a direct sum of kG-modules
>_Uo,
2)

13
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taken over all G-orbits O in X, with Up = ¥ ,¢p Us. For any z € O, Up is determined
by U,, since Uye = U, - g for all ¢ € G. By restriction of action, the subspace U,
may be considered to be a kG -module, where G, = {g € G | 29 = z} is the isotropy
subgroup of z. As a kG-module then, Uy is isomorphic to the induced module
& (Uz) = U, ®xa, kG, also written U, 1%; this follows from standard results about
induced modules [1]. Thus the indecomposable (respectively, irreducible) G-vector
bundles on X are indexed by pairs (V, z) where z is a representative of an orbit of X
and V is an indecomposable (respectively, irreducible) kG -module.

We shall consider another way to view G-vector bundles on X. Let k[X]
be the algebra of all functions on X taking values in k, with pointwise addition and
multiplication. Note that k[X] is isomorphic to a diagonal matrix algebra with stan-
dard basis all dual functions ¢, for z € X. Define an action of G as automorphisms
of k[X] by

fo(z) = f(=*")
for all g € G, z € X, and f € k[X]. The action of ¢ € G on the basis of dual
functions is given by ¢J = ¢4, for all z € X.

We next consider the skew group algebra that is the smash product of k[X]
with kG, as in [12]. Explicitly, we build an algebra structure on k[X] ® kG, similar
to that for the quantum double, as follows. For £ € X and h € H, we denote the
basis element ¢, ® h of k[X] ® kG by ¢,h. We define a product by requiring that
dsho,l = ngquy,,-l ke, which is nonzero if and only if z = y*™'. Denote the resulting
algebra by Dx(G). Its identity is 1p,(6) = Ysex ¢=1. In case X is the G-set G
under conjugation, then Dx(G) = D(G), the quantum double of G, has a Hopf

algebra structure as well.

3.2. A category equivalence

Let mod-Dx(G) denote the category of (finite dimensional right) Dx(G)-
modules. Let vect(X,G) denote the category of G-vector bundles on X. Note that
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both are abelian categories. Theorem 3.2.2 below states that these categories are

equivalent. The lemma and theorem are analogous to results in [8].

Lemma 3.2.1 (i) Let U be a Dx(G)-module. Then Uyect = {U ¢z }rex is a G-vector
bundle on X.

(i) Let U = {Us}zex be a G-vector bundle on X. Then Upy, = Y gex Us is
a Dx(G)-module where v+ ¢,9 = u, - g for all u € Up,, z € X, and g € G.

Proof: (i) Clearly U = ¥ ,cx U - ¢ as a direct sum of vector spaces, since
the ¢, for all z € X, are orthogonal idempotents whose sum is 1. Further, U¢,g =
Ugprs = Udge. Thus Uyect is a G-vector bundle on X.

(i) For all g,¢' € G, z,2' € X, and u € 3" cx U, we have

- (¢xg¢z’gl) = u(%(ﬁx,g—lgg')
= 8, g-1Uz99’
= &, -1(uz9)g’
= 8, o1 (udeg)g’
And u-1pg) = u - Ypex ol = Xpex s = u. Thus Up, is a Dx(G)-module. O

We now define the functors (:)vect and (-)p, on morphisms of mod-Dx (G)
and of vect(X, ). For any morphism f : U — V in mod-Dx(G), define the map
fvect : Uvect — Viect by setting fyect = f. We see that fyect is a morphism of G-vector

bundles as follows. Clearly fyect is a kG-module map on the underlying ¥G-modules
U and V of Uyect and Vyect. Further,

Similarly, for any morphism f : U — V in vect(X, G), define fp, : Up, —
Vby by setting fp, = f. f u € U,z € X and g € G, then

F(u- ¢a9) = f(usg) = f(ua)g = f(u)og = f(u) - $ug.
Thus fp, is a Dx(G)-morphism.
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Theorem 3.2.2 There is an equivalence between the category of Dx(G)-modules and

the category of G-vector bundles on X given by the functors

(Jvect : mod-Dx(G) — vect(X,G),
()px : vect(X,G) — mod-Dx(G).

Proof: We have seen that morphisms in mod-Dx(G) correspond one-to-one
to morphisms in vect(X, G) under the functors (-)vect and (-)p,. Thus it suffices to
prove that ((*)vect)Dx and ((-)Dy )vect are isomorphisms on modules.

To see that ((-)vect)py is an isomorphism, let U be a Dx(G)-module, u €
(Uvect)Dx, ¢ € X, and g € G. Then udyg = uzg in Uyeet, and uzg = udyg in U.
Thus mapping u to itself in U is a Dx(G)-module isomorphism.

To see that ((-)py )vect is an isomorphism, let U be a G-vector bundle on X.
Let u be an element of the underlying kG-module ¥,cx Us, ¢ € G, and z € X.
Then uzg = u¢.g = uzg. Thus mapping u to itself in 3., x U, is an isomorphism of
G-vector bundles. O

3.3. A characterization of D(G)-modules

We now turn to the situation relevant to the quantum double of G. Let H

be a subgroup of G, and consider G to be an H-set under the conjugation action.

Corollary 3.3.1 Up to isomorphism, the indecomposable (respectively, irreducible)
Dg(H)-modules are indezed by pairs (V,g) where g is a representative of an H-orbit
on G, and V is an indecomposable (respectively, irreducible) kCg(g)-module.

Proof: By Theorem 3.2.2, the category of Dg(H)-modules is equivalent
to the category of H-vector bundles on G. By the discussion in Section 3.1, the
indecomposable (respectively, irreducible) H-vector bundles on G are indexed by the
pairs (V, g), and the H-vector bundle corresponding to (V, g) is given by

VTHZ E qu’a

z€Cu(g)\H
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with g°-component V= = V* the conjugate module for kCy(g®) = kCu(g)®. We
consider this H-vector bundle to be a D¢(H)-module by defining

v-@gh' =vg - b
forallve V1#, ¢ € G, and ' € H, as in Lemma 3.2.1. O

In particular, when H = G, we have the well-known characterization of mod-
ules for the quantum double D(G) of G [7, 9, 12]: The indecomposable (respectively,
irreducible) D(G)-modules are indexed by pairs (V,g) where g is a representative
of a conjugacy class in GG, and V is an indecomposable (respectively, irreducible)
kC(g)-module.

We now describe an equivalent construction of indecomposable Dg(H)-
modules, similar to that given in [12], which will be used in Chapter 5. Again,
let ¢ be a representative of an H-orbit on G, let J = Cg(g), and V be an inde-
composable kJ-module. Let inclyy(V) be the Dg(J)-module corresponding to the
J-vector bundle on G that is V in the g-component and 0 in all other components.

Then the corresponding indecomposable Dg(H)-module is the induced module
incly,s (V) ®pg(s) Da(H).

As Dg(H) is a free left Dg(J)-module, we see that this Dg(H)-module is a sum of
the subspaces incly, (V) ®pg(s) Da(J)h, for b € J\H, which are the g*-components
of the corresponding H-vector bundle on G.

Next we obtain a ring of H-vector bundles on G that is isomorphic to the
representation ring R(Dg(H)). This will give us an alternative description of these
representation rings which will be used in Chapters 4 and 5. Let ryect(G, H) be the
additive group generated by isomorphism classes of H-vector bundles on G with direct

sum for addition. We define a product on elements of ryect(G, H), as in [11]. (In case

k = C, our ryect(G, H) is Lusztig’s Kg(G).) Let U and V be H-vector bundles on
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G. The product U @ V of U and V is defined to be the H-vector bundle having

components

(U®V)g = Z Uz@‘/a:‘lg

z€G
for ¢ € G. The sum of these components has kH-module structure given by the

action of H on the tensor product of the underlying kH-modules of U and V. We
check the action of H on fibers. If h € H, then

UV)y-h = > Uh®Vp1,5h
z€G

= 2 Uk ® Vgtgr
z€G

= (U® V)gh.

Thus U ® V is an H-vector bundle on G.
With this product, ryect(G, H) becomes an associative ring. The identity is
the H-vector bundle which is the trivial kH-module k in the 1-component, and 0 in

all other components.

Theorem 3.3.2 Let H be a subgroup of G, and consider G to be an H-set under

conjugation by elements of H. Then there is a ring isomorphism
T(DG(H)) ~ rvect(G, H).

Proof: Theorem 3.2.2 provides a one-to-one correspondence between the set
of isomorphism classes of indecomposable Dg(H)-modules and the set of isomorphism
classes of indecomposable H-vector bundles on G. This correspondence may be ex-
tended to an isomorphism of the additive groups of r(Dg(H)) and of ryect(G, H).
Thus it suffices to prove that the functor (-)yect : mod-DH — vect(G, H) preserves
tensor products.

Let U and V be Dg(H)-modules. Then (U @ V)yect is an H-vector bundle
on G with underlying kH-module U ® V and components, for each g € G,

((U ® V)vect)g = (U ® V)¢g = Z U, ® V¢$—-1g.
z€G
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On the other hand, Uyect ® Vyect is an H-vector bundle on G with underlying kH-
module U @ V and components, for each g € G,

(Uvect ® Vvect)g = Z(Uvect)z ® (Vvect)a:—lg
z€G

= Y U¢s ®Vép, O

z€G

We shall use the language of Dg(H)-modules and of H-vector bundles on G
interchangeably in the sequel. If U is a Dg(H)-module, we shall write U, = U - ¢,
and consider this space to be a kCy(g)-module, or a kL-module for any subgroup L
of Cx(g). For an arbitrary element of R(Dg(H)), we take its g-component to be the
element of R(Cp(g)) which is the corresponding linear combination of g-components

of the vector bundles involved.




CHAPTER 4

CHARACTERS OF THE REPRESENTATION
RING R(D(G))

In this chapter we construct characters of the representation ring R(D(G))
of the quantum double from characters of the Green ring R(G), that is of the rep-
resentation ring of the group algebra kG. In Chapter 5 it will be shown that the
characters constructed here are all of the characters of R(D(G)). When k has prime
characteristic, we show that those characters of R(D(G)) arising from the Brauer
characters of the group provide a quantum double analog of the Brauer characters,
in that they correspond one-to-one to the characters of the semisimple Grothendieck
ring R(D(G)).

We shall use the notation Z(A) for the center of an algebra A.

4.1. Characters in the complex case

In case £ = C, an observation of Lusztig [11, p. 242] and Theorem 3.3.2
imply that

R(D(@)) ~ [] 2(CC(9))

as algebras, where the product is taken over a set of representatives g of conjugacy

classes in GG. This isomorphism is given by mapping a D(G)-module U to
Z Tr(¢hg7 U)h = E Tl‘(g, Uh)h
heC(g) h€C(g)

for each g, where Tr denotes taking the trace of the linear transformation indicated,
and Uy, = Udy, is the h-component of U as discussed in Chapter 3. Lemma 4.2.3 below
gives a generalization of these maps for fields of arbitrary characteristic, and Theorem

4.3.2 gives an analog of the above isomorphism for fields of prime characteristic.

20
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We note that if H is any finite group, and p is an irreducible character of H,

then the map
1

degp
is an algebra homomorphism, that is a character of Z(CH). To see this, consider the

p:Z(CH) - C

decomposition of the semisimple algebra CH into a direct sum of matrix algebras.

The elements of Z(CH) are sums of scalar multiples of the identities for these ma-

1
trix algebras. The map P singles out one of these matrix algebras, and maps

elements of Z(CH) to the?r corresponding scalar coordinates. These maps, one for
each irreducible character p of H, provide an algebra isomorphism of Z(CH) onto a
direct sum of copies of C.

In this way, for the case k£ = C, we obtain characters of R(D(G)) via the
decomposition R(D(G)) ~ [1, Z(CC(g)) given above. Such a character maps a D(G)-

module U to
1

Xoo(U) = degp
h

> Tr(g, Un)p(h),

€C(9)

in accordance with [11]. These characters completely separate elements of R(D(QG)),
so that R(D(QG)) is semisimple in this case. For other fields, there is a similar decom-
position, given in Theorem 4.3.2, of the Grothendieck ring R(D(G)) of D(G)-modules,
with the result that D(G)-modules may be separated at least up to composition fac-
tors by characters of R(D(G)). The proof of Theorem 4.3.2 involves certain homo-
morphisms mapping R(D(G)) to the algebras Z(CC(g)) whose definition depends on

Lemma 4.2.3 below.

4.2. Characters in the general case

A species of the Green ring R(G) is an algebra homomorphism from R(G)
to C [5]. In other words, a species is a character of the Green ring. Distinct species
are linearly independent [5].

Let L be a subgroup of G, and let r§ : R(G) — R(L) denote the linear map

defined by restriction of modules. Note that r¢ is an algebra homomorphism. If U
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is a kG-module, we also denote the restriction r(U) by U |1, when the group G is
understood. An origin of a species s : R(G) — C is a minimal subgroup L of G such
that s = t o r§ for some species ¢ of R(L). In [5] it is shown that the origins of a
species form a single conjugacy class of subgroups.

We shall need the following lemma, which is Proposition 6.9 of [5]. Let
i% : R(H) — R(G) denote the induction map, that is i§(U) = U ®ig kG for a
kH-module U.

Lemma 4.2.1 (Benson-Parker) The following are equivalent for a species s of
R(G) and a subgroup H of G:

(i) There is a species t of R(H) such that s =t o r.

(ii) Ker(s) 2 Ker(r$),

(ii) Ker(s) 2 Im(:§). O

One consequence of the lemma is that if L is an origin of s and s = to r§,

then the kernel of ¢ contains any module induced to L from a proper subgroup of L.
To see this, note that here ¢ cannot factor through r% for a proper subgroup J of L,
as L is the origin of s, and restriction of modules is transitive. Now apply the lemma,
to the new situation with G = L and H a proper subgroup of L.

The next lemma is a key part of the proof of Lemma 4.2.3, which results in
the description of characters of R(DG) in Theorem 4.2.4. It is also used in the next
chapter.

Lemma 4.2.2 Let U and V be D(G)-modules, L a subgroup of G, H = Cg(L), and
h € H. Then the kL-submodule ¥ cq_g Uy ® Vy-1p, of resg(G)(U ® V) is isomorphic

to a direct sum of kL-modules induced from proper subgroups of L.

Proof: First note that > cq_g Uz @ V;-1; is indeed a kL-submodule of the
restriction resg(G)(U ®V) of the D(G)-module URV to a kL-module: As H = C¢(L),
conjugates of elements of G — H by an element { € L are still in G — H, and /-

conjugates of two elements whose product is A will still have product A.
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Without loss of generality, we may assume that U and V are indecomposable
D(G)-modules. Considering U and V as G-vector bundles on G, their underlying kG-
modules must satisfy resg(G)(U ) ~ U, 1¢ and resg(G)(V) ~ V, 19 for some elements
z,g9 € G, where U, is considered here as a kC(z)-module, and V;, a kC(g)-module.
Then resp (U @ V) =rf oresg O(U @ V) =~ (U, 1¢ ®V, 19) lL as a kL-module,
D(G)
G

since res is an algebra homomorphism (Lemma 2.2.1). By the Mackey Product

Theorem [1], this is isomorphic to

Z ((Um" ® Vq) lC(x)"nC(g)) TGlL’
o0€C(z)\G/C(g)

since (U;)? =~ Uys as modules for kC(z)° = kC(z°). By the Mackey Subgroup
Theorem [1], we see finally that resf(G)(U ® V) is isomorphic to

> > (Uzor ® Vyr) Loyeracigyrar T -
o€C(z)\G/C(g) T€C(z)°nC(g)\G/L

The subspaces U, ® V-1, of U @ V appearing in 3 pcq_g Us ® Vi-15 cor-
respond to some of the Uzer ® V- (or their L-conjugates) in the above sum for
which neither 7 nor ¢g” is an element of H. Further, if Uyr ® V,r appears in
2 zeG-H Uz ® Vp-1p, then so does the entire kL-module (Uyor ® Vjr) Lo(z)ornc(g)rnrt?,
as L-conjugates of elements of G — H are also elements of G — H. If neither 2°” nor
g" is an element of H = Cg(L), then L is contained in neither C(z°7) nor C(g7).
Thus C(z)°"NC(g)"NL = C(z°")NC(¢7) N L is properly contained in L. Therefore
Y-zeG-H Uz ® V;—13 is equal to a sum of certain summands in the direct sum decom-

position of resf(G)(U ® V) above that are modules induced from proper subgroups of
L. 0O

Lemma 4.2.3 Let s be a species of R(G) with origin L, s =tor§, and H = Cg(L).
Define a linear function f,: R(D(G)) — Z(CH) by

ft(U) = E t(Uh)h

heH

for all D(G)-modules U. Then f; is an algebra homomorphism.
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Proof: First note that the U, are indeed kL-modules, since elements of L
commute with elements of H. Also note that the image of f; is in the center of CH as
claimed, again since L commutes elementwise with H, any two conjugate elements of
H will correspond to components which are isomorphic as kL-modules. Thus ¢ takes
the same value on these components. Clearly f; takes the trivial D(G)-module to the
identity of Z(CH). It remains to prove that f; is multiplicative.

Let U and V be D(G)-modules. Then

FOVY) = X HUYHVa)eh

z,h€H

= Z t(Ux ® V:,,.—lh)h,

z,h€H

where in the second sum, k has been replaced by 1k, and we have used the multi-

plicativity of the species ¢. On the other hand,

fUV) = 3 H((UV)h

heH

= Zt(ZUw®V;:"lh>h
heH z€G

= Y tUs®@Vomrp)h+ D ¢t ( SN U.® Vm_lh) h.
z,h€H heH zeG—-H

Comparing the two calculations, we need only see that the second sum above is equal
to zero. But this follows directly from Lemmas 4.2.1 and 4.2.2. Thus this sum is zero

and f; is multiplicative. O
We point out that f; may not be surjective. In particular, if we let
Stabg(t) = {g € Ng(L) | t(a) = t(a?) for all a € R(L)}

be the stabilizer of ¢ in G [5], then clearly the image of f; is contained in the set
(CH)Stba() of points of CH fixed under conjugation by Stabg(?).
We are now ready to describe certain characters of the representation ring

R(D(G)) of the quantum double.
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Theorem 4.2.4 Let s be a species of R(G) with origin L, s = torf, H = Cg(L),
and p an irreducible character of H. Define a linear function Xt : R(D(G@)) — C by

1

for all D(G)-modules U. Then x4, is a character of R(D(G)).

Xt,p(U) =

Proof: The function x:, is just the composition of the homomorphism
ft + R(D(G)) — Z(CH) given in Lemma 4.2.3 with the homomorphism delgpp :
Z(CH) — C discussed in Section 4.1. O

In case k = C, the characters described in the theorem are precisely those
given in Section 4.1. Indeed, the Green ring R(G) in this case coincides with the
character ring, and species are essentially the columns of the character table for G.
Each is given by the trace of an element ¢ € G on a module. The fact that g is a
group-like element in the Hopf algebra kG implies that |

Tr(g,U® V) = Tr(g,U)Tx(g,V)

for any two kG-modules U and V, and so this trace function is an algebra homomor-
phism. An origin of the species Tr(g, -) is the cyclic subgroup L =<g> generated by
g, with centralizer H = C(g). The corresponding character of R(D(G)) described in
Theorem 4.2.4 is thus the map sending a D(G)-module U to

Xx(g, -),p(U) = ‘&:}g‘[; he%%g) Tr(g, Un)p(R),
for g a representative of a conjugacy class in G, and p an irreducible character of
C(g). These are the characters x,,, given at the beginning of this chapter, that
appear in [11]. We also note that these characters of R(D(G)) may be expressed as

trace functions of the elements

of D(G). However these are not group-like elements in general.
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We point out that any character of R(D(G)) of the form x;, given in the
theorem may be thought of as an extension to R(D(Q)) of the species s = t o r{ of
R(G): The map inclg,; : R(G) — R(D(G)), sending a kG-module U to the D(G)-
module which is U in the 1-component and 0 elsewhere, embeds R(G) as a subalgebra

of R(D(G)). If a € R(G), then

Xolindlaa(@) = oo 3 ¢ (lncloa(a)) o)
€

= égpt ((inclg,1(a))1) p(1)

= to rg(a)

= s(a).

Thus distinct species of R(G) yield distinct characters of R(D(G)).

4.3. A quantum analog of Brauer characters

In the rest of this chapter, we develop an analog of Brauer characters for
the quantum double D(G). We assume now that the characteristic p of k is prime.

We consider certain species, called Brauer species, that are essentially the
columns of the table of Brauer characters for the group G. The Brauer species
corresponding to a given p’-element g of G, that is an element whose order is not
divisible by p, is given by lifting eigenvalues of the action of g on a module to C and
taking the trace there. Let s, denote this species. Just as in the case k = C, an origin
of s, is L =<g> with centralizer H = C(g). Write s, = t, 0r% , where t, is the
corresponding Brauer species of R(<g>).

Recall that Ro(D((G)) denotes the ideal of R(D(G)) generated by elements
of the form U — U’ — U” where

0-U ->U-U"-90

is a short exact sequence of D(G)-modules. By Theorem 2.3.3, Ro(D(G)) = 0 if and
only if the characteristic p of k¥ does not divide the order of G.
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Lemma 4.3.1 For each p'-element g of G, let s, = tgorcjg> denote the corresponding
Brauer species of R(G). The ideal Ro(D(G)) is the kernel of the homomorphism

= : R(D(G)) — [[ Z(CC(g))

given by the product of the maps f;,, defined in Lemma 4.2.3, taken over a set of

representatives g of p'-conjugacy classes of G.

Proof: First let 0 — U’ - U — U” — 0 be a short exact sequence of
D(G)-modules. Considering D(G)-modules as G-vector bundles on G, we have short
exact sequences

0-U,—-U,—-U!—>0

of kC(z)-modules for all + € G. Let g be a p’-element of G. If z € C(g), then
ty(Uz) = t,(UL) +14,(UY), as t, is a Brauer species of the subgroup <g> of C(g). Thus
Jeo(U) = f1,(U") + f;,(U") for all p'-elements g of G, and Ro(D(G)) C Ker(r).

Let a € R(D(G)) with w(a) = 0. Fix ¢ € G and let g be a p'-element
of C(z). Then f;,(a) = 0 implies that t,(as) = 0 for all » € C(g); in particular,
ty(as) = 0 where a, here is considered as an element of R(<g>). Let b, = tgorgg;) be
the Brauer species of C'(z) corresponding to the p’-element g of C(z). Then b,(a,) = 0
for all such g, where a, is now considered as an element of R(C(z)). But this implies
that a, € Ro(C(z)), the ideal of short exact sequences of kC(z)-modules [4].

Now, by Theorem 3.2.2, D(G)-modules and D(G)-module maps are deter-
mined by their z-components, where z ranges over a set of representatives of con-
jugacy classes of G. Further, a short exact sequence of kC(z)-modules induces to a
short exact sequence of kG-modules [1] which may also be considered to be a short
exact sequence of G-vector bundles on G. The latter corresponds to a short exact se-

quence of D(G)-modules under the equivalence of categories of Theorem 3.2.2. Thus

a € Ro(D(Q)) and Ker(r) C Ro(D(@)). O
The lemma implies that there is an induced map from the Grothendieck ring

R(D(G)) = R(D(G))/Bo(D(G))
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to [1, Z(CC(g)) provided by the product of the maps f;, for Brauer species s, =
tg0 r§g>. Further, this map is injective. It turns out to be surjective as well, which
we demonstrate next. First we recall that the number of irreducible kH-modules, for

any finite group H, is equal to the number of conjugacy classes of p’-elements in H

[1].

Theorem 4.3.2 For each representative g of a p'-conjugacy class in G, let s, =
ty0 rgp denote the corresponding Brauer species. The product 7 of the maps fi,,

defined in Lemma 4.2.3, induces an algebra isomorphism
R(D(G)) =[] Z(CC(9))-
g
In particular, the Grothendieck ring R(D(G)) is semisimple.

Proof: By Lemma 4.2.3, = is an algebra homomorphism. By Lemma 4.3.1,
7 induces an injection from R(D(G)) = R(D(G))/Ro(D(G)) to 1, Z(CC(g)). It re-
mains to prove that 7 is a surjection, which will follow once we see that the dimensions
of these two finite dimensional algebras are the same.

The dimension of the Grothendieck ring R(D(G)) is equal to the number of
irreducible D(G)-modules. By Corollary 3.3.1 this is

> " (number of p'-conjugacy classes in C(z)),

where the sum is taken over a set of representatives z of conjugacy classes in G. The

dimension of [T, Z(CC(g)) is

> (number of conjugacy classes in C(g)),
g

where the sum is taken over a set of representatives g of p'-conjugacy classes in G.
The two sums are equal, as they represent two ways of counting the number of orbits
in the G-set, under G-conjugation, consisting of all pairs (z, g) where z is an element

of G, g is a p’-element of G, and z and ¢ commute.
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That R(D(G)) is semisimple now follows from the fact that the algebras
Z(CC(g)) are semisimple, as discussed in Section 4.1. O |

Theorem 4.2.4 now allows us to write down a table consisting of the complete
set of characters of the Grothendieck ring R(D(G)). Such a character maps the image
of a D(G)-module U in R(D(G)) to

xtyo(U) = d—lg— 3 t,(Un)a(h),

heH

where s, = t, 0%, is a Brauer species of R(G), H = C(g), and p is an irreducible
character of H. By Theorem 4.3.2 the corresponding characters x,,, of the represen-
tation ring R(D(G)) separate D(G)-modules up to composition factors.

In case the characteristic p of k£ does not divide the order of GG, we have by
Theorems 2.3.3 and 4.3.2 that R(D(G)) ~ R(D(G)) is semisimple, and the above
discussion is the full story. Otherwise, there are in general more species than the
Brauer species [5], so that there will in general be characters of R(D(G)), defined by
Theorem 4.2.4, which separate some modules having the same composition factors.

When this happens, the ideal Ro(D(G)) of short exact sequences properly contains
the radical of R(D(QG)).




CHAPTER 5
THE GREEN FUNCTOR R(D¢(+))

In this chapter we prove that the collection of all the representation rings
R(Dg(H)), for subgroups H of G, constitutes a Green functor (Theorem 5.1.5). We
then obtain a decomposition of R(D(G)) into a direct sum of ideals (Theorem 5.2.3)
based on a result of Thévenaz about Green functors. This decomposition leads to an
induction theorem (Corollary 5.2.4), a result regarding questions of semisimplicity of
R(D(G)) (Corollary 5.2.5), and the result that the characters of R(D(G)) described

in the previous chapter are all of its characters (Theorem 5.3.2).

5.1. R(Dg(-)) is a Green functor

We first define a Green functor for G over an arbitrary commutative ring A,
although here we shall always take A to be the complex numbers. See [16] for standard
definitions and results regarding Green functors.

Suppose that for each subgroup H of G there is a A-algebra A(H), and for

every pair of subgroups L < H and every element g € G, there are linear maps:
o The restriction maps r : A(H) — A(L);
e The induction (or transfer) maps i : A(L) — A(H);
o The conjugation maps cu, : A(H) — A(H?Y).

We say that A(-) is a Green functor (or algebra G-functor) if these maps satisfy the
following properties:
(i) The maps r¥ are algebra homomorphisms and the maps cy, algebra

isomorphisms for all subgroups L < H and all g € G.

30
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(ii) rf = idam), the identity map on A(H), and rf orf = r{ for all
subgroups L < H < J.

(iii) ¢ff = idamy and iff o i¥ = if for all subgroups L < H < J.

(iv) capn = idam) and chogr 0 corg = ch gy for all subgroups H, all elements
he H,and g,¢' € G.

(v) ergorE =rl} ocpyy and cgy 0 =i o cp, for all subgroups L < H
and g € G.

(vi) (Frobenius axiom) For all subgroups L < H and all elements a € A(L)

and b € A(H), we have

b-if(a) =i#(rH(B)-a) and H(a) -b=i(a rE(D)).
(vii) (Mackey axiom) For all subgroups H, L < J, we have

J «J H L9
Tg Ol = Z tLonH © TLenH © CL,g-
g€ENJ/H

We point out that in our definition, if instead the A(H) are merely A-
modules, and properties (i) and (vi) are deleted, then A(-) is a Mackey functor (or
module G-functor) [16]. There are important examples of such functors. Group
cohomology becomes a Green functor given appropriate maps. We shall make use of
the Green functor assigning the Green ring R(H) to each subgroup H with the usual
restriction, induction, and conjugation maps [16].

Now we define such linear maps for the representation ring of the quantum
double. These correspond to the standard definitions of maps on the modules of fully
group-graded algebras [6], and we choose notation consistent with this situation.
However, in general a group-graded algebra may not be a Hopf algebra, and so it
may not have a representation ring.

Let L < H be subgroups of GG, and g € G.

¢ The restriction map ngEL)) R(Dg(H)) — R(Dg(L)) sends a Dg(H)-module
U to a Dg(L)-module by restriction of the action from Dg(H) to Dg(L). The
resulting module will be denoted rDGgg)(U ) or Ulpg(r)-
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e The induction map igg&? : R(Dg(L)) — R(Dg(H)) sends a Dg(L)-module V
to the Dg(H)-module V ®pg )y Dg(H). This module will be denoted igigf))(V)
or V1Ps(H),

o The conjugation map cg,y : R(Dg(H)) — R(Dg(H?)) sends a Dg(H)-module
U to the Dg(Hg)-module Us=U QDg(H) Dg(H)g =U ®ODe(H) 9-

We first show that the Frobenius axiom holds in this situation. By linearity

of the maps involved, it suffices to prove this for modules.

Lemma 5.1.1 (Frobenius axiom) Let L < H be subgroups of G. Let U be a
Dq(L)-module and V a Dg(H)-module. Then

(i) V@ U TP (V | p 1y @U) TP and

(it) UtPeH) @V ~ (U ® V | pyry) TPH).

Proof: We prove (i); the proof of (ii) is similar. Define a linear map f :

(V1bpsy ®U) ®pg(zy De(H) = V ® (U ®pgr) Da(H)) by
f(v®u)®h)=vh® (u®h)

forall u € U, v € V, and h € H. Then f is well-defined. It is bijective with
inverse f~! : V ® (U ®pg(ry De(H)) = (V Ipg) ®U) ®pgry Da(H) defined by
fTv® (v ®hk)) = (vh™' ® u) ® h. It remains to check that f is a Dg(H)-module
map. Let ¢ € G and ' € H. Then

f(v@u)®h-dsh') = f((v®u)Prgn-1 ® hh')
= f ( > (Vo @ Up-1pgp-1) @ hh')

zeG

= > vdshh' @ (uds-1pgn—1 ® hh').
z€G

On the other hand,

f(v®u)®h)-gh" = (vh® (u® h))gh’
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= ) vh¢:h' @ (u@h)p,-1,h

z€G

= Z v¢hzh-—1 hh’ ® (u¢h$—1gh-1 ® hh,)
z€G

= Y vgshh' @ (uds-1pgn— @ hh'). O
z€G

We next show that the conjugation maps are algebra homomorphisms.

Lemma 5.1.2 Let H be a subgroup of G, g € G, and U and V be Dg(H)-modules.

Then there is an isomorphism of Dg(H?)-modules
UQV)y ~Us® V.

Proof: The map f : (U ® V)? — U? ® V7 defined by f((x®v)® g) =
(u®9g) ® (v® g) is a Dg(H?)-module isomorphism. This follows from calculations

similar to those in the proof of the previous lemma. O

We next state two results which are proved in [6] for any fully group-graded

algebra, and finally prove that R(Dg(-)) is a Green functor.

Lemma 5.1.3 Let L < H be subgroups of G, g,9' € G, and U a Dg(L)-module.
Then

(i) (U ®ps(zy Da(L)g) ®pg(rs) Da(L?)g' =~ U ®pgy Da(L)gy',

(#) (U4 (1) Da(L)g)®ps(re) Da(H?) 22 (U4 (z)Da(H))®p ey Da(H)g.
O

Lemma 5.1.4 (Mackey Subgroup Theorem) Let L,H < J < G, and U be a
Dg(L)-module. Then

UL poan = Y Upeoynat®e® . O
g€INJ/H

Theorem 5.1.5 R(Dg(-)) is a Green functor.
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Proof: Let L < H < J be subgroups of G, and g,¢’' € G. Clearly the maps
Dg(H)

Tpe(zy are algebra homomorphisms. The maps cy,, are algebra isomorphisms by

Lemma 5.1.2 and the fact that action by g is invertible. Note that rggg; = idr(pg(a))

trivially, and rgggg) ) rggg}) = rgigg by the definition of the restriction maps.
We have zggg; = idp(pg(a)) by definition, and igg&)) o iggg? = zgg% follows

from the definitions and freeness of these Hopf algebras over their Hopf subalgebras.

Clearly cg,p, is the identity map on R(Dg(H)) whenever h € H. Lemma 5.1.3 yields

CH9,g' O CH,g = CH,gg» and cg,4 © iggg? = igzg:)) ocrg. By their definitions, restric-
tion commutes with conjugation in the sense that ¢4 o nggf)) = rggg:)) o CcH .
Lemma 5.1.1 is the Frobenius axiom. The Mackey axiom,
Do(J) _ :Dg(J) _ .Dg(H) Dg(L9
’"Dg(H) ° ZDZ(L) = Z zDg(Lg)nH °© TDgEngnH OCLg
9€L\J/H

for L,H < J <@, is Lemma 5.1.4. [

Next we state the Mackey Product Theorem for R(D(QG)), which holds more
generally for all Green functors [16]. It follows directly from the axioms, particularly

the Mackey and Frobenius axioms.

Proposition 5.1.6 (Mackey Product Theorem) Let L,H < J < G. LetU be a
Dg(L)-module and V a Dg(H)-module. Then

UtPe) @v1Peld) ~ E: (U ® V)lpgwoynr) T <. 0
(L9)
g€I\J/H

5.2. A direct sum decomposition of R(D(G))

We introduce the Brauer morphisms for a Green functor A(-) [16]. If J < L
are subgroups of G, the Frobenius axiom implies that the image of i% : A(J) — A(L)
is an ideal of A(L). The residue algebra of A(L) is

A(L) = A(L)/ 3 Tm(i7),

J<L
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the sum being taken over all proper subgroups J of L. Let brf : A(L) — A(L)
be the canonical surjection, and let brf = brl o r§ : A(G) — A(L), called the
Brauer morphism. We next state a result of Thévenaz about Green functors over
rings with the order of G invertible [16, Corollary 3.6]. In particular, it will apply to

our situation, in which R(Dg(-)) is a Green functor for G over C.

Proposition 5.2.1 (Thévenaz) Let A(-) be a Green functor for G over a ring A
in which the order of G is invertible. Then the product of the Brauer morphisms brg

yields an algebra isomorphism
A(G) = [TA(LYN®),
L

where the product is taken over a set of representatives L of conjugacy classes of

subgroups of G. U

Applied to the situation of the quantum double, the proposition yields an
algebra isomorphism

R(D(G)) = [IR(Ds(L))Ne),
L

given by the product of Brauer morphisms brgga). We next modify this ideal direct
sum decomposition by examining the quotients R(Dg(L)) more closely.

We shall need the following lemma. The algebra homomorphism reng(L) :
R(Dg(L)) — R(L) is given by the restriction of a Dg(L)-module to a kL-module.
We shall use the maps inclyy : R(J) — R(Dg(J)), where J is a subgroup of G and
h € Cg(J), introduced in Section 3.3: Given a kJ-module U, inclj,(U) is the Dg(J)-
module which is U in the h-component and 0 elsewhere. Note that res?G(J)

is the identity map on R(J).

o iIlClJ,h

Lemma 5.2.2 Let J < L be subgroups of G. If V is a Dg(J)-module then
resp IV @p sy Da(L)) = res; (V) @ps kL
as kL-modules. If U is a kJ-module and h € Cg(L) then

inclL,h(U Rk kL) ~ iIlClJ,h(U) ®Dg(J) DG(L)
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as Dg(L)-modules. That is, restoD) o jPelD) _ L o pegDald) , and inclpp o t5 =
L Dg(J) J J ) J
-DG(L) !

pa(J) © inclyp.

Proof: As Dg(L) is a free left Dg(J)-module, the elements v ® £, where v
runs over a basis of V and £ runs over a set of representatives of the right cosets J\L,
are a basis of V ®p ) De(L) and of res?G(J)(V) ®wg kL. Clearly the actions of L on
these basis elements correspond. Similarly, the elements u ® £, where u runs over a
basis of U and £ runs over a set of representatives of the right cosets J\ L, are a basis
of U ®xs kL and of inclj,(U) ®pg(s) Da(L). The actions of Dg(L) on these basis

elements correspond. O

A p-hypoelementary subgroup of G is a subgroup L for which L/O,(L)
is cyclic [4, 5], where O,(L) denotes the unique maximal normal p-subgroup of L.
If L is any subgroup of G, then the residue algebra of the Green ring, R(L) =
R(L)/ ¥ y<r, Im(:%), is nonzero if and only if L is p-hypoelementary [16].

Theorem 5.2.3 For each subgroup L of G, R(Dg(L)) ~ R(L)® CCq(L). In partic-

ular, the product of the Brauer morphisms brgga) induces an isomorphism of algebras

— Ne(L)
R(D(®) =[] (R(L) ® CCa(L)) ",
L
where the product is taken over a set of representatives L of conjugacy classes of

p-hypoelementary subgroups of G.

Proof: The second statement follows from the first and Proposition 5.2.1,
since R(L) = 0 for all subgroups L of G which are not p-hypoelementary.

We consider Dg(L)-modules to be L-vector bundles on the L-set G as in
Section 3.3. If U is a Dg(L)-module and h € Cg(L), then the h-component U is a
Dg(L)-submodule of U. Define a linear map 91, : R(Dg(L)) — R(L) ® CCs(L) by

pr(U)= Y. brio restO(U,) @ h
heCg(L)
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for all Dg(L)-modules U, where brf : R(L) — R(L) is the canonical map. We
claim that ¢z is an algebra homomorphism, and that it is surjective with kernel
eqlial to Ker(brgggig) = Y jer Im (zggg))) This will imply that R(Dg(L)) and
R(L) ® CCs(L) are isomorphic.

That 1y, is an algebra homomorphism results from a calculation very similar
to that in Lemma 4.2.3 where it is shown that a certain function f; : R(D(G)) —
Z(CCg (L)) is an algebra homomorphism. (In fact, such a function f; factors through
YL, o resgg(;%), as will be shown in Lemma 5.3.1). The key step in showing that
is an algebra homomorphism is applying Lemma 4.2.2, which implies that the kL-
submodule 3, cq_cyr) Uz ® Vo-1p of resf(G)(U ® V), for D(G)-modules U and V, is
in the kernel of bry.

To see that ¢y, is surjective, choose ¢ € R(L) and h € Cg(L). Then the
element incly s(a) of R(Dg(L)) which is a in the h-component, and 0 in all other
components, will map to br¥(a) ® & under ;.

Finally we show that Ker(¢y) = Ker (brgggg). First let a € Im (Zggg’;)
for a proper subgroup J of L, say a = 3; &;V; ® p(sy Da(L) where the V; are Dg(J)-
modules, o; € C. If b € Cg(L), then ap, = ¥; o (V; ®De(J) Dg(L))h by definition,

and
(Vi ®e() Da(L)), = Vi®be() Da(L)d
= Vién ®pg(a) Da(L)

= (Vi)r ®pg(s) Da(L).

Thus brf o reng(L)(ah) = 0 by Lemma 5.2.2 and the definition of the Brauer map
brf. Therefore 11(a) = 0, and Ker (brgggg) C Ker(¢r).
Now let y € Ker(¥r), so that

brf o rest(L)(yh) =0

for each h € Cg(L). In other words, rest(L)(yh) € Ker(brf) = Y51 Im(i%) for each
h € Cg(L). Note that yj, is in the image of the map incly : R(L) — R(Dg(L)).




38

Applying inclz 5 to rest(L)(yh), we see that y; is in Y ;.7 Im (zggg{;) by Lemma
5.2.2, and so brgggg(yh) = 0. To see that the sum of the remaining components of y
is also in Ker (brggg;), note that they correspond to L-orbits on G containing more
than one element. By the construction of Dg(L)-modules following Corollary 3.3.1,

this sum is a sum of Dg(L)-modules induced from subalgebras Dg(J) for proper
subgroups J of L, and so will be in Ker (brgggg) .0

In fact, it is clear now that the isomorphism

R(D(G)) > 1;[ (R(L) ® CCo (L))"

of the theorem is given by the product of the maps ¥r, o resg(Gc(;}J). We shall use this
fact in the proof of Lemma 5.3.1.

We have the following induction theorem as an immediate corollary.

Corollary 5.2.4 The representation ring R(D(G)) is generated by the images of the
maps igﬁi) for all p-hypoelementary subgroups L of G.

Proof: By Theorem 5.2.3 and the preceding discussion, R(D(G)) # 0 if and
only if G is p-hypoelementary. If G is p-hypoelementary, we are done. If not, then
R(D(G)) =0, and thus R(D(G)) = Y 1<¢ Im (zgg(;l):)) By induction on the partially
ordered set of subgroups of G, R(D¢g(L)) is generated by the images Im (zggg‘;) for
all p-hypoelementary subgroups J of L. By transitivity of the induction maps, we
now have the same result for R(D(G)). O

The direct sum decomposition given in Theorem 5.2.3 provides a connection
between questions of semisimplicity of R(D(G)) and questions of semisimplicity of
the Green ring R(G). This connection is stated in the next corollary. An arbitrary
commutative algebra over C is semisimple if the intersection of the kernels of its
characters is zero, or equivalently, if characters separate elements of the algebra.

We summarize what is known about questions of semisimplicity of the Green

ring R(G) [5]. If the characteristic p of k is odd, then R(G) is semisimple if and
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only if G has cyclic Sylow p-subgroups. If the characteristic of k is 2, then R(G) is
semisimple if a Sylow 2-subgroup of G is either a cyclic group or the Klein four-group.
For some other cases in characteristic 2, R(G) is not semisimple, and there are also
some unresolved cases.

We note that Proposition 5.2.1 applied to the Green ring functor yields
R(G) ~ [T R(L)"e®),
L

where the product is taken over a set of representatives L of conjugacy classes of
subgroups of G (or of p-hypoelementary subgroups). In case the quotient R(G) is
nonzero (that is, in case G is p-hypoelementary), it is realized as an ideal direct

summand of R(G) in this way.

Corollary 5.2.5 If R(D(G)) is semisimple, then R(G) is semisimple. If the charac-
teristic p of the field k is odd and R(G) is semisimple, then R(D(Q)) is semisimple.

Proof: We may embed R(G) as a subalgebra of R(D(G)) via the map inclg, :
R(G) — R(D(G)). As both R(G) and R(D(G)) are commutative algebras, the first
statement is clear.

Suppose the characteristic p of k is odd and assume that R(G) is semisim-
ple. By the above discussion, G then has cyclic Sylow p-subgroups. Thus for any
subgroup L of G, L also has cyclic Sylow p-subgroups, and so R(L) is semisimple.
As discussed above, R(L) may be identified with an ideal direct summand of R(L)
for each subgroup L of G. Thus R(L) is semisimple. Consider the decomposition of
Theorem 5.2.3,

R(D(G)) ~ 1L1 (R(L) ® coe(r) ™.

Each summand satisfies

Ca(L)

(R(L) @ €Ca (L))" ¢ (R(L) ® CCa(L)) ™ = R(L) ® 2(CCa (L)),

as Cg(L) acts trivially on R(L), and therefore on R(L). But R(L) ® Z(CCqx(L))

is the tensor product of two semisimple commutative algebras, and so is semisimple
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itself. Since (—R(L) ® (CC'C,;(L)) Mol s a subalgebra of the semisimple algebra R(L)®
Z(CCg(L)), it is semisimple as well. By the direct sum decomposition of R(D(G))
above, we now have that R(D(G)) is semisimple. [

5.3. Characters revisited

Next we show how the characters of R(D(G)) defined in Section 4.2 behave

with respect to the ideal direct sum decomposition

— Ne(L)
R(D(G)) =] (R(L) ® COs(L))
L
of Theorem 5.2.3. We point out that any character must factor through exactly one

of the summands.

Lemma 5.3.1 Let s be a species of R(G) with origin L, s = torf, H = Cg(L),
and p an irreducible character of H. The character x:, of R(D(G)), defined in Theo-
rem 4.2.4, factors through the summand (—R(L) ® CCG(L)) Na(L) of the decomposition
of Theorem 5.2.3.

Proof: We recall that x:, = deléppoft’ where f; : R(D(G)) — Z(CH)
is defined in Lemma 4.2.3. First note that ¢ : R(L) — C, having origin L, factors
through the quotient R(L) of R(L) by Lemma 4.2.1. We write 7 for the induced map
from R(L) to C. We claim that f; is merely the composition of the maps

D{G
S T (R

R(D(G)) R(L) ® CCa(L)) """ B4 C @c 2(COs(L)) S Z(CCa(L)),

where 11, is defined in the proof of Theorem 5.2.3. Recall that the product of the maps
P o ng&) yields the isomorphism R(D(G)) = [1. (R—(L) ® CCq (L)) Na(t)
Theorem 5.2.3. Let U be a D(G)-module. Then 9y, o rg(cc(;}l)((f) = YheCs(L) brf o
reng(L) (Ur) ® h. Under T ® id and the indicated identification, this is mapped to
Yheco@)t(Un)h = fi(U), as t applied to a kL-module is the same as  applied to

given in
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its equivalence class in R(L). Following this map by E——l— p, we see that x:, factors
egp
Ne(L)

through (E(L) ® (CCG(L)) a

The lemma yields a proof that the characters x: , described in Theorem 4.2.4
are all of the characters of R(D(G)).

Theorem 5.3.2 Any character of R(D(G)) is of the form x:,, defined in Theo-
rem 4.2.4, for some species s = t o r§ of R(G) with origin L and some irreducible
character p of Ca(L).

Proof: We need only determine the structure of characters of the individ-
ual ideal direct summands (E(L) ® CCq (L))NG(L) of R(D(G)). Note that R(L) ®
Z(CCg(L)) is integral over (B(L) ® CCq(L))Ne(X): Any o € R(L) ® Z(CCqx(L)) =
(R(L) ® CCg(L))°sT) satisfies the monic polynomial

I[I (e-a,
n€Ca(L)\Na(L)

which has coefficients in (F(L) ® CCG(L)) Ne®

all characters of (R_(L) ® CCg(L)) Ne(®) may be extended to characters of R(L) ®
Z(CCg(L)). The latter are merely products of characters of B(L) and of Z(CCgx(L)).

By Lemma 4.2.1 and the discussion in Section 4.1, these correspond to products of

. Thus by the going-up theorem [2],

species t of R(L) having origin L with the functions ——— p, where the p are irreducible

d
. eg_p Na(L)
characters of Cq(L). We restrict such characters to (R(L) ® CCq (L)) . By the
1
proof of Lemma 5.3.1, we obtain in this way the characters x;, = EeE;p o f; of

R(D(G)) described in Theorem 4.2.4. O
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