
COHOMOLOGY OF HOPF ALGEBRAS

SARAH WITHERSPOON

1. Introduction

In these expository notes, we collect some homological techniques for Hopf al-
gebras, and prove in particular that the cohomology of a Hopf algebra embeds, as
a subalgebra, into its Hochschild cohomology. Important special cases are group
algebras and universal enveloping algebras of Lie algebras. The embedding was
first noted in the general case by Ginzburg and Kumar [7]. Our proof is based
on an explicit isomorphism of modules (Lemma 3.2), and we prove directly that
the embedding is multiplicative (Corollary 3.8). This proof appeared first in the
appendix of [13]; here we include more details.

These notes were developed in part for a short course given at the University
of Buenos Aires in May 2010, and we thank the University of Buenos Aires for
its hospitality. We thank Andrea Solotar and the students in the course, as well
as Dave Benson and Paul Sobaje, for their comments which greatly improved the
writing.

2. Some homological properties

Let A be a Hopf algebra over a field k with counit ε : A → k and antipode
S : A→ A. Tensor products will be over k unless otherwise specified. We will use
Sweedler notation for the coproduct ∆ : A→ A⊗ A, that is ∆(a) =

∑
(a) a1 ⊗ a2

for a ∈ A, although we will often leave out the subscript (a) on the summation
symbol. Tensor products of A-modules will be considered to be A-modules via the
coproduct ∆, unless otherwise stated.

We establish relations among A-modules given by Hom, ⊗, and dual. If V,W
are left A-modules, then Homk(V,W ) is a left A-module via

(a · f)(v) =
∑

a1f(S(a2)v),

and similarly, if V,W are right A-modules, then Homk(V,W ) is a right A-module
via

(f · a)(v) =
∑

f(vS(a1))a2,

for all a ∈ A, f ∈ Homk(V,W ), and v ∈ V .
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Lemma 2.1. (i) Let U , V , and W be left A-modules. Then there is a natural
isomorphism of left A-modules

Homk(U ⊗ V,W ) ∼= Homk(U,Homk(V,W )).

If S is bijective, there is a natural isomorphism of vector spaces

HomA(U ⊗ V,W ) ∼= HomA(U,Homk(V,W )).

(ii) Let U , V , and W be right A-modules. Then there is a natural isomorphism of
right A-modules,

Homk(U ⊗ V,W ) ∼= Homk(V,Homk(U,W )),

and a natural isomorphism of vector spaces

HomA(U ⊗ V,W ) ∼= HomA(V,Homk(U,W )).

Proof. (i) Define functions φ : Homk(U ⊗ V,W )→ Homk(U,Homk(V,W )) by

(φ(f)(u))(v) = f(u⊗ v),

and ψ : Homk(U,Homk(V,W ))→ Homk(U ⊗ V,W ) by

(ψ(g))(u⊗ v) = (g(u))(v).

We check that φ is an A-module homomorphism. Similar calculations show that
ψ is an A-module homomorphism and is inverse to φ. Let a ∈ A. Then, as S is
an anti-coalgebra homomorphism,

(φ(a · f)(u))(v) = (a · f)(u⊗ v)

=
∑

a1(f(S(a2) · (u⊗ v)))

=
∑

a1(f(S(a3)u⊗ S(a2)v)).

On the other hand,

(a · φ(f))(u)(v) =
∑

(a1(φ(f)(S(a2)u)))(v)

=
∑

a1((φ(f))(S(a3)u)(S(a2)v)

=
∑

a1(f(S(a3)u⊗ S(a2)v)).

Therefore φ(a · f) = a · φ(f).
For the second statement in part (i), we note that in general HomA(U, V ) is

precisely the subspace of A-invariant elements of Homk(U, V ), that is

(Homk(U, V ))A := {f ∈ Homk(U, V ) | a · f = ε(a)f for all a ∈ A}.
(This is a straightforward computation.)

(ii) The proof of the statements for right modules is similar. �
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If V is a left (respectively, right)A-module, its dual vector space V ∗ = Homk(V, k)
has a left (respectively, right) A-module structure given by

(a · f)(v) = f(S(a)v)

(respectively, (f · a)(v) = f(vS(a)) for all a ∈ A, v ∈ V , and f ∈ V ∗.

Lemma 2.2. Let V,W be left (respectively, right) A-modules. If V is finite di-
mensional as a vector space over k, then Homk(V,W ) ∼= W ⊗V ∗ as left A-modules
(respectively, Homk(V,W ) ∼= V ∗ ⊗W as right A-modules).

Proof. We will prove the statement for left A-modules; that for right A-modules
is similar. Let φ : W ⊗ V ∗ → Homk(V,W ) and ψ : Homk(V,W ) → W ⊗ V ∗ be
defined by (φ(w⊗ f))(v) = f(v)w and ψ(f) =

∑
i f(vi)⊗ v∗i where {vi}, {v∗i } are

dual bases for V, V ∗. Let a ∈ A. Then

φ(a · (w ⊗ f))(v) =
∑

φ(a1w ⊗ (a2 · f))(v)

=
∑

((a2 · f)(v))(a1w)

=
∑

f(S(a2)v)a1w.

On the other hand,

(a · (φ(w ⊗ f)))(v) =
∑

a1(φ(w ⊗ f)(S(a2)v))

=
∑

a1(f(S(a2)v)w)

=
∑

f(S(a2)v)a1w.

Therefore φ(a · (w ⊗ f)) = a · (φ(w ⊗ f)). Clearly φ is inverse to ψ. �

Remark 2.3. Alternatively, we may define a dual module as V # = Homk(V, k)
with action (a · f)(v) = f(S(a)v) where S is the composition inverse of S (under
the assumption that S is bijective). Give Homk(V,W ) the alternative A-module
structure (a · f)(v) =

∑
a2f(S(a1)v), under which it is still the case that the

subspace of A-homomorphisms in Homk(V,W ) is equal to the A-invariant sub-
space of Homk(V,W ). It may be shown that under this A-module structure,
Homk(V,W ) ∼= V # ⊗W , and Homk(U ⊗ V,W ) ∼= Homk(V,Homk(U,W )).

Lemma 2.4. If P is a projective left A-module, and V any left A-module, then
both P ⊗ V and V ⊗ P are projective left A-modules. If P is a projective right
A-module, and V any right A-module, then both P ⊗ V and V ⊗ P are projective
right A-modules. Similar statements apply with “projective” replaced by “flat”.

Proof. We give two proofs of the first statement. The first proof is essentially
that given in Benson [2, Proposition 3.1.5]: The projective module P is a direct
summand of a free module, so it suffices to prove that A⊗ V and V ⊗A are both
free as left A-modules. There is an isomorphism A⊗V ∼= A⊗Vtr, where Vtr is the
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underlying vector space of V , but with the trivial A-module structure (via ε). This
isomorphism is similar to one in Montgomery [11, Theorem 1.9.4], and is given by
a⊗ v 7→

∑
a1⊗S(a2)v, the inverse function by a⊗ v 7→

∑
a1⊗ a2v, for all v ∈ V ,

a ∈ A. Now Vtr is a direct sum of copies of the trivial module k, and so A ⊗ Vtr
is a free left A-module. Similarly, there is an isomorphism of left A-modules,
V ⊗A ∼= Vtr⊗A, via the A-module homomorphism v⊗ a 7→

∑
S(a1)v⊗ a2 whose

inverse is v ⊗ a 7→
∑
a1v ⊗ a2, and so V ⊗ A is a free left A-module.

The second proof of the first statement uses properties of functors: As V is
projective over the field k and P is projective over A, HomA(P,Homk(V,−)) is an
exact functor. By Lemma 2.1, this is the same as HomA(P ⊗ V,−). Therefore
P ⊗ V is projective. A similar argument applies to V ⊗ P , using the alternative
A-action on Hom given in Remark 2.3.

The second statement, for right modules, may be proven similarly. The last
statement follows since flat modules are direct limits of finitely generated free
modules. �

Lemma 2.5. Let U, V,W be left A-modules. The isomorphisms of Lemmas 2.1
and 2.2 induce the following isomorphism:

Ext∗A(U ⊗ V,W ) ∼= Ext∗A(U,W ⊗ V ∗).
A similar statement holds for right modules.

Proof. Let P q be a projective resolution of U , so that P q⊗V is a projective resolution
of U⊗V (see Lemma 2.4). The natural isomorphisms of Lemmas 2.1 and 2.2 yield
a chain homotopy equivalence

HomA(P q,W ⊗ V ∗)→ HomA(P q⊗ V,W ),

and thus an isomorphism on Ext as claimed. �

Remark 2.6. Using the alternative A-action on Hom described in Remark 2.3, we
similarly find that

Ext∗A(U ⊗ V,W ) ∼= Ext∗A(V, U# ⊗W ).

Cup products. We use the following notation for (co)homology of the Hopf al-
gebra A over the field k, and Hochschild (co)homology, to distinguish the two:

H∗(A,M) := Ext∗A(k,M), H∗(A,M) := TorA∗ (k,M),
HH∗(A,M) := Ext∗Ae(A,M), HH∗(A,M) := TorA

e

∗ (A,M),

where M denotes a left A-module in the first line, and an A-bimodule in the second
line.

We will use the following version of the Künneth Theorem to define products
on cohomology. For a proof under the flat hypothesis on C, see e.g. Weibel [19,
Theorem 3.6.3]; a symmetric argument gives a proof under the flat hypothesis on
D. For more details on cup products, see e.g. Benson [2, §3.2].
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Theorem 2.7 (Künneth). Let R be a ring. Let C be a chain complex of right R-
modules, and let D be a chain complex of left R-modules. Assume either that Cn
and d(Cn) are both flat R-modules for each n, or that Dn and d(Dn) are both flat
R-modules for each n. Then for each n, there is a natural short exact sequence:

0→
⊕
i+j=n

Hi(C)⊗R Hj(D)→ Hn(C ⊗R D)→
⊕

i+j=n−1

TorR1 (Hi(C),Hj(D))→ 0.

Some of our applications of the Künneth Theorem will be in the case that R = k
is a field, in which case the Tor term always vanishes, so that the remaining two
terms are isomorphic for each n.

Again let A be a Hopf algebra over a field k, and let M,M ′, N,N ′ be left A-
modules. We will define a cup product for each i, j ≥ 0 as in Benson [2, §3.2],

^ : ExtiA(M,M ′)× ExtjA(N,N ′)→ Exti+jA (M ⊗N,M ′ ⊗N ′).
Let P q be a projective resolution of M , and Q q be a projective resolution of N .
Consider the total complex of the tensor product complex P q ⊗ Q q. By Lemma
2.4, each module in this complex is projective. By the Künneth Theorem, since
the tensor product is over the field k and Tork1 is always 0, P q⊗Q q is a projective
resolution of the A-module M ⊗N .

Let f ∈ HomA(Pi,M
′), g ∈ HomA(Qj, N

′) represent elements of ExtiA(M,M ′),

ExtjA(N,N ′), respectively. Then

f ⊗ g ∈ HomA(Pi ⊗Qj,M
′ ⊗N ′)

and this function may be extended to an element of

HomA(
⊕

r+s=i+j

(Pr ⊗Qs),M
′ ⊗N ′)

by defining it to be the 0 map on all components other than Pi⊗Qj. By definition
of the differential on the total complex,

d(f ⊗ g) = d(f)⊗ g + (−1)deg ff ⊗ d(g),

so such a product of two cocycles is again a cocycle. It also follows from this for-
mula that the product of a cocycle with a coboundary is a coboundary. Therefore
this induces a well-defined product on cohomology.

We will need the following result from Benson [2].

Lemma 2.8. [2, Prop. 3.2.1] If M,M ′, N,N ′ are left A-modules and ζ ∈ ExtmA (M,M ′),
η ∈ ExtnA(N,N ′), then the cup product

ζ ^ η ∈ Extm+n
A (M ⊗N,M ′ ⊗N ′)

is equal to the Yoneda composite of

ζ ⊗ idN ′ ∈ ExtmA (M ⊗N ′,M ′ ⊗N ′)
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and

idM ⊗η ∈ ExtnA(M ⊗N,M ⊗N ′).

Remark 2.9. Letting M = M ′ = N = N ′ = k, since k ⊗ k ∼= k, the cup product
(equivalently, Yoneda composition) gives H∗(A, k) the structure of a graded ring.
Another proof that the two products are the same also shows that the product is
graded-commutative, that is α ^ β = (−1)degαdeg ββ ^ α; this is the Eckmann-
Hilton argument. See Suarez-Alvarez [17] for a general context for this type of
argument, which does not require cocommutativity of A (cf. [2, Cor. 3.2.2]). More
generally, when M = N = k and M ′ = N ′ = B is an A-module algebra (that
is, a · (bb′) =

∑
(a1 · b)(a2 · b′) for all a ∈ A, b, b′ ∈ B), we may compose the cup

product with the map induced by multiplication B ⊗ B → B to obtain a ring
structure on H∗(A,B). In the next section, we will let B be the algebra A itself,
under the adjoint action of A, as defined there.

Let M = M ′ = k and N ′ = N . By composing with the isomorphism k⊗N ∼= N ,
we thus obtain an action of H∗(A, k) on Ext∗A(N,N), via −⊗N followed by Yoneda
composition. On the other hand, we have an action by Yoneda composition of
H∗(A, k) on Ext∗A(k,N ⊗N∗).

In the following statement, we apply Lemma 2.5 with U = k, V = N :

Theorem 2.10. Let N be a left A-module. The action of H∗(A, k) on Ext∗A(N,N),
given by −⊗N followed by Yoneda composition, corresponds to that on Ext∗A(k,N⊗
N∗), given by Yoneda composition, under the isomorphism

Ext∗A(N,N) ∼= Ext∗A(k,N ⊗N∗).

Proof. Let P q be a projective resolution of k, so that P q⊗N is a projective resolution
of k⊗N ∼= N . We must check that the following diagram commutes for each m,n,
where φm, φm+n are the isomorphisms given by Lemma 2.1(i) with V = N and
U = Pm, Pm+n, respectively, and the horizontal maps are the chain level maps
corresponding to cup product (see Lemma 2.8).

HomA(Pm, k)⊗ HomA(Pn ⊗N,N)

id⊗φn
��

// HomA(Pm+n ⊗N,N)

φm+n

��
HomA(Pm, k)⊗ HomA(Pn,Homk(N,N)) // HomA(Pm+n,Homk(N,N))

Let ζ ∈ ExtmA (k, k) and η ∈ ExtnA(N,N), represented by f ∈ HomA(Pm, k) and
g ∈ HomA(Pn ⊗ N,N), respectively. Identify f with the corresponding function
from Ωm(k) to k, and extend to a chain map f q with fi ∈ HomA(Pm+i, Pi). The
top horizontal map takes f ⊗ g to g ◦ (fn ⊗ idN), and applying φm+n we have

φm+n(g ◦ (fn ⊗ idN))(x)(v) = g(fn(x)⊗ v)
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for all x ∈ Pm+n, v ∈ N . On the other hand, (id⊗φn)(f ⊗ g) = f ⊗ φn(g), and
applying the bottom horizontal map we find

(φn(g) ◦ fn)(x)(v) = g(fn(x)⊗ v).

Therefore the diagram commutes. �

There is another action of H∗(A, k) on Ext∗A(M,M) given by M ⊗ − followed
by Yoneda composition. In case A is cocommutative (or more generally quasi-
triangular), this action is the same as that given by − ⊗M followed by Yoneda
composition. In general it will not be the same; see, for example, [3]. We state
next the counterpart of Theorem 2.10 for this action. Let Hom′k(V,W ) denote
the A-module that is Homk(V,W ) as a vector space, but with action as described
in Remark 2.3. Let V # = Homk(V, k), with A-module structure as described in
Remark 2.3. Then, as stated there, there are isomorphisms of A-modules:

Hom′k(U ⊗ V,W ) ∼= Hom′k(V,Hom′k(U,W )) ∼= Hom′k(V, U
# ⊗W ).

It follows that

(2.1) HomA(U ⊗ V,W ) ∼= HomA(V, U# ⊗W ),

and consequently

Ext∗A(U ⊗ V,W ) ∼= Ext∗A(V, U# ⊗W ).

Theorem 2.11. Let M be a left A-module. The action of H∗(A, k) on Ext∗A(M,M),
given by M⊗− followed by Yoneda composition, corresponds to that on Ext∗A(k,M#⊗
M), given by Yoneda composition, under the isomorphism

Ext∗A(M,M) ∼= Ext∗A(k,M# ⊗M).

Proof. Let P q be a projective resolution of k, so that M ⊗ P q is a projective res-
olution of M ⊗ k ∼= M . We must check that the following diagram commutes
for each m,n, where φm, φm+n are the isomorphisms given in (2.1), with U = M
and V = Pn, Pm+n, respectively, and the horizontal maps are the chain level maps
corresponding to cup product (see Lemma 2.8).

HomA(Pm, k)⊗ HomA(M ⊗ Pn,M)

id⊗φn
��

// HomA(M ⊗ Pm+n,M)

φm+n

��
HomA(Pm, k)⊗ HomA(Pn,Hom′k(M,M)) // HomA(Pm+n,Hom′k(M,M))

Let ζ ∈ ExtmA (k, k) and η ∈ ExtnA(M,M), represented by f ∈ HomA(Pm, k) and
g ∈ HomA(M ⊗ Pn,M), respectively. Identify f with the corresponding function
from Ωm(k) to k, and extend to a chain map f q with fi ∈ HomA(Pm+i, Pi). The
top horizontal map takes f ⊗ g to g ◦ (idM ⊗fn), and applying φm+n we have

φm+n(g ◦ (idM ⊗fn))(x)(v) = g(v ⊗ fn(x))
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for all x ∈ Pm+n, v ∈ M . On the other hand, (id⊗φn)(f ⊗ g) = f ⊗ φn(g), and
applying the bottom horizontal map we find

(φn(g) ◦ fn)(x)(v) = g(v ⊗ fn(x)).

Therefore the diagram commutes. �

It can be shown that (N∗)# ∼= N and (M#)∗ ∼= M as A-modules. As a conse-
quence, we have the following theorem.

Theorem 2.12. Let M,N be left A-modules.

(i) The action of H∗(A, k) on Ext∗A(N,N), given by −⊗N followed by Yoneda
composition, corresponds to the action given by N∗⊗− followed by Yoneda
composition.

(ii) The action of H∗(A, k) on Ext∗A(M,M), given by M⊗− followed by Yoneda
composition, corresponds to the action given by −⊗M# followed by Yoneda
composition.

Proof. (i) Let M = N∗. Then M# ∼= N , as noted above. Apply Theorems 2.10
and 2.11.

(ii) Let N = M#. Then N∗ ∼= M , as noted above. Apply Theorems 2.10 and
2.11. �

3. Bimodules and Hochschild cohomology

Let Ae = A ⊗ Aop, the enveloping algebra of A. We next give some relations
among the algebras A, Ae, and their modules.

Lemma 3.1. Let δ : A→ Ae be the function defined by

δ(a) =
∑

a1 ⊗ S(a2)

for all a ∈ A. Then δ is an injective algebra homomorphism.

Proof. First note that δ(1) = 1⊗ 1, the identity in Ae. Let a, b ∈ A. Then

δ(ab) =
∑

a1b1 ⊗ S(a2b2)

=
∑

a1b1 ⊗ S(b2)S(a2)

= (
∑

a1 ⊗ S(a2))(
∑

b1 ⊗ S(b2)) = δ(a)δ(b),

as multiplication in the second factor is opposite that in A.
To see that δ is injective, compose with the function π : Ae → A defined by

π(a⊗ b) = aε(b). We have, for all a ∈ A,

π ◦ δ(a) = π(
∑

a1 ⊗ S(a2)) =
∑

a1ε(S(a2))

=
∑

a1ε(a2) = a,
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that is π ◦ δ is the identity map on A. This implies that δ is injective. �

We will identify A with the subalgebra δ(A) of Ae. This will allow us to induce
modules from A to Ae, using tensor products: Let M be a left A-module, and
consider Ae to be a right A-module via right multiplication by elements of δ(A).
Then the vector space Ae ⊗A M is a left Ae-module, the action given by left
multiplication in the first factor.

Consider A to be a left Ae-module by left and right multiplication. Let k be the
trivial module for A, that is k is the field on which a ∈ A acts by multiplication
by ε(a).

Lemma 3.2. There is an isomorphism of left Ae-modules

A ∼= Ae ⊗A k,

where Ae ⊗A k is the induced Ae-module.

Proof. Let f : A→ Ae ⊗A k be the function defined by

f(a) = a⊗ 1⊗ 1,

and g : Ae ⊗A k → A be the function defined by

g(a⊗ b⊗ 1) = ab

for all a, b ∈ A. We will check that f and g are both Ae-module homomorphisms,
and that they are inverses.

Let a, b, c ∈ A. Then, since c =
∑
c1ε(c2), we have

f((b⊗ c)(a)) = f(bac)

= bac⊗ 1⊗ 1

=
∑

bac1 ⊗ ε(c2)⊗ 1

=
∑

bac1 ⊗ S(c2)c3 ⊗ 1.

Now identifying A with δ(A) ⊂ Ae, since the rightmost factor is in k with action
of A given by ε, we may rewrite this as∑

ba⊗ c2 ⊗ ε(c1) =
∑

ba⊗ ε(c1)c2 ⊗ 1

= ba⊗ c⊗ 1

= (b⊗ c)(a⊗ 1⊗ 1)

= (b⊗ c)f(a).

Therefore f is an Ae-module homomorphism.
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Let a, b, c, d ∈ A. Then

g((c⊗ d)(a⊗ b⊗ 1)) = g(ca⊗ bd⊗ 1)

= cabd

= (c⊗ d)(ab)

= (c⊗ d)g(a⊗ b⊗ 1).

Therefore g is an Ae-module homomorphism.
Now let a, b ∈ A. We have

g ◦ f(a) = g(a⊗ 1⊗ 1) = a,

and f ◦ g(a⊗ b⊗ 1) = f(ab)

= ab⊗ 1⊗ 1

=
∑

ab1ε(b2)⊗ 1⊗ 1

=
∑

ab1 ⊗ ε(b2)⊗ 1

=
∑

ab1 ⊗ S(b2)b3 ⊗ 1

=
∑

a⊗ b2 ⊗ ε(b1)

=
∑

a⊗ ε(b1)b2 ⊗ 1

= a⊗ b⊗ 1.

Therefore f and g are inverse functions. �

We will use the following general lemma, due to Eckmann and Shapiro, in the
case B = Ae. There is a similar statement for coinduced modules (using Hom)
that we do not give here; see e.g. Benson [2, Corollary 2.8.4].

Lemma 3.3 (Eckmann-Shapiro). Let B be a ring, and let A be a subring of B
for which B is flat as a right A-module. Let M be a left A-module, and let N be
a left B-module. Consider N to be an A-module via restriction of the action, and
let B ⊗A M denote the induced B-module where B acts on the leftmost factor by
multiplication. Then for all i ≥ 0, there is an isomorphism of abelian groups,

ExtiA(M,N) ∼= ExtiB(B ⊗AM,N).

Proof. Let P q → M be an A-projective resolution of M . Since B ⊗A A ∼= B,
the induced modules B ⊗A Pi are projective as B-modules. The induced complex
B⊗AP q→ B⊗AM is exact, as B is flat over A, and so it is a projective resolution of
B⊗AM as a B-module. We will prove that for each i, HomA(Pi, N) ∼= HomB(B⊗A
Pi, N) as abelian groups. By their definitions, these isomorphisms will comprise a
chain map that induces an isomorphism on homology.

Let
φ : HomA(Pi, N)→ HomB(B ⊗A Pi, N)
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be defined by φ(f)(b ⊗ p) = bf(p) for all b ∈ B, p ∈ Pi, and f ∈ HomA(Pi, N),
and let

ψ : HomB(B ⊗A Pi, N)→ HomA(Pi, N)

be defined by ψ(g)(p) = g(1⊗ p), for all p ∈ Pi and g ∈ HomB(B⊗A Pi, N). Since
each such function g is a homomorphism of B-modules, φ and ψ are inverse maps,
and by their definitions they are homomorphisms of abelian groups. �

Remark 3.4. There is a Tor version of the lemma which is easier: Let N be a
left B-module, let M be a right A-module, and let M ⊗A B denote the induced
module. If B is flat as a left A-module, then for all i there is an isomorphism of
abelian groups, TorAi (M,N) ∼= TorBi (M ⊗A B,N).

Lemma 3.5. Assume the antipode S is bijective. Then the right A-module Ae,
where A acts by right multiplication by δ(A), is a projective A-module.

Proof. We claim that S : A→ Aop is an isomorphism of right A-modules, where A
acts on the right by multiplication on A and by multiplication by S(A) on Aop. We
need only check S is an A-module map: S(a·b) = S(b)S(a) = S(a)·S(b), in Aop, for
all a, b ∈ A. This yields an isomorphism of right A-modules A⊗A→ A⊗Aop = Ae.
Now A⊗A is projective as a right A-module by Lemma 2.4. Thus Ae is a projective
right A-module, the action of A being precisely multiplication by δ(A). �

Remark 3.6. The hypothesis that S is bijective is not very restrictive: All finite
dimensional Hopf algebras satisfy this, as well as many known infinite dimensional
Hopf algebras.

There is a cup product on Hochschild cohomology for any algebra A, which may
be expressed in terms of the bar resolution

· · · → A⊗4 → A⊗3 → A⊗ A→ A→ 0

as follows. Identify HomAe(A⊗(i+2), A) ∼= Homk(A
⊗i, A). Let f ∈ Homk(A

⊗i, A),
g ∈ Homk(A

⊗j, A) represent elements in HHi(A,A), HHj(A,A), respectively. Then

(f ^ g)(a1 ⊗ · · · ⊗ ai+j) := f(a1 ⊗ · · · ⊗ ai)g(ai+1 ⊗ · · · ai+j)
for all a1, . . . , ai+j ∈ A, where the images of f and g are multiplied as elements
in A. This represents an element in HHi+j(A,A). More generally, if B is an A-
bimodule that is also an algebra for which a(bb′) = (ab)b′ and (bb′)a = b(b′a) for
all a ∈ A, b, b′ ∈ B, this formula gives a cup product on HH∗(A,B).

There is an equivalent definition of the cup product on Hochschild cohomology,
using a tensor product of complexes, as follows. Let X q be any Ae-projective
resolution of A. We claim that the total complex of X q ⊗A X q is also an Ae-
projective resolution of A. First we will show that for each i, j, Xi ⊗A Xj is
projective as an Ae-module. It suffices to show that Ae ⊗A Ae is projective. But
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Ae ⊗A Ae ∼= Ae ⊗k A since Ae acts only on the outermost two factors of A. Since
A is free as a k-module, we see that Ae ⊗k A is free as an Ae-module. Next, to
see that X q⊗AX q is a resolution of A, we apply the Künneth Theorem: First note
that the module A ⊗ Aop, under left multiplication by elements of A in the left
factor, is a free left A-module since Aop is a free k-module. It follows that X q is, by
restriction, a projective resolution of the free left A-module A. So the boundaries
are also all projective A-modules, that is the hypotheses of the Künneth Theorem
hold. The Tor terms in the Künneth sequence vanish: The only term in which not
both arguments are 0 is TorA1 (H0(X),H0(X)) = TorA1 (A,A) = 0 since A is free.
This implies that X q⊗AX q is indeed a resolution of A⊗A A ∼= A by Ae-projective
modules.

By the Comparison Theorem there is a chain map D : X q → X q ⊗A X q, and
the cup product on Hochschild cohomology may be defined by this map: Let f ∈
HomAe(Xi, A), g ∈ HomAe(Xj, A) represent elements of HHi(A,A), HHj(A,A).
Then f ^ g = (f ⊗ g) ◦D. Such a map D is unique up to chain homotopy. For
any two resolutions, there is also a chain map between them, and so this definition
of cup product does not depend on choices of X q and D. If X q is the bar resolution,
one choice of chain map D induces precisely the chain level cup product as given
above; see Sanada [14].

The embedding. We will consider A to be an A-module by the left adjoint
action, that is if a, b ∈ A,

a · b =
∑

a1bS(a2).

Denote this A-module by Aad. More generally, if M is an A-bimodule, denote by
Mad the left A-module with action given by a · m =

∑
a1mS(a2) for all a ∈ A,

m ∈M .

Theorem 3.7. Assume the antipode S is bijective. Then there is an isomorphism
of algebras

HH∗(A,A) ∼= H∗(A,Aad).

Proof. By Lemma 3.5, Ae is a flat right A-module, and so we may apply Lemma 3.2
and Lemma 3.3 with B = Ae, M = k, and N = A to obtain Ext∗A(k,Aad) ∼=
Ext∗Ae(A,A) as k-modules. It remains to prove that the cup products are pre-
served by this isomorphism. This follows from the proof of [15, Proposition 3.1],
valid more generally in this context. We provide some details for the sake of
completeness.

Let P q denote anA-projective resolution of k, soX q = Ae⊗AP q is anAe-projective
resolution of Ae ⊗A k ∼= A.

There is an A-chain map ι : P q → X q defined by ι(p) = (1 ⊗ 1) ⊗ p for all
p ∈ Pi. Let f ∈ HomAe(Xi, A) be a cocycle representing a cohomology class in
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Ext∗Ae(A,A). The corresponding cohomology class in Ext∗A(k,Aad) is represented
by f ◦ ι.

Let D : P q → P q ⊗ P q be a chain map. Such a map exists and is unique
up to homotopy by the Comparison Theorem. Since k ⊗ k ∼= k, the Künneth
Theorem implies that P q⊗ P q is also a projective resolution of k as an A-module,
via similar arguments to those given before. Therefore D induces an isomorphism
on cohomology. The map D also induces a chain map D′ : X q → X q ⊗A X q as
follows. There is a map of Ae-chain complexes θ : Ae ⊗A (P q ⊗ P q) → X q ⊗A X q,
given by

θ((a⊗ b)⊗ (p⊗ q)) = ((a⊗ 1)⊗ p)⊗ ((1⊗ b)⊗ q).

Now D induces a map from Ae⊗AP q to Ae⊗A(P q⊗P q). Let D′ be the composition
of this map with θ. Again D′ is unique up to homotopy.

Now let f ∈ HomAe(Xi, A), g ∈ HomAe(Xj, A) be cocycles. The above observa-
tions imply the following diagram commutes:

X q D′
−→ X q⊗A X q f⊗g−−−→ A⊗A A

∼−→ A
ι ↑ ||
P q D−→ P q⊗ P q fι⊗gι−−−→ A⊗ A m−→ A

where m denotes multiplication. The top row yields the product in Ext∗Ae(A,A)
and the bottom row yields the product in Ext∗A(k,Aad). �

Corollary 3.8. Assume the antipode S is bijective. Then H∗(A, k) is an algebra
direct summand of HH∗(A,A).

By “algebra direct summand,” we mean that H∗(A, k) is isomorphic to a direct
sum of a subalgebra of HH∗(A,A) and an ideal, so that we may also view H∗(A, k)
as a quotient of HH∗(A,A).

Proof. Under the left adjoint action of A on itself, the trivial module k is isomor-
phic to the submodule of Aad given by all scalar multiples of the identity 1. In fact
k is a direct summand of Aad, its complement being the kernel of ε. As Ext∗A(k,−)
is additive, the result follows. �

Remark 3.9. Again there is a Tor version that is easier: Apply Remark 3.4 to
obtain HHi(A,A) ∼= Hi(A,A

ad) as abelian groups. It follows that Hi(A, k) is a
direct summand of HHi(A,A).

Corollary 3.10. Assume the antipode S is bijective. If HH∗(A,A) is finitely
generated, then H∗(A, k) is finitely generated.

Proof. By Corollary 3.8, H∗(A, k) may be expressed as a quotient of HH∗(A,A),
so it is generated by the images of the generators of HH∗(A,A). �
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Corollary 3.8 was the idea used by Ginzburg and Kumar in [7] to prove graded-
commutativity of H∗(A, k) via graded-commutativity of HH∗(A,A). This is a dif-
ferent proof from the Eckmann-Hilton argument. Gerstenhaber [8, §7, Corollary 1]
first proved graded-commutativity of the cup product on Hochschild cohomology;
see also Sanada [14, Proposition 1.2].

There are many finite dimensional Hopf algebras A for which H∗(A, k) is known
to be finitely generated: Golod [9], Venkov [18], and Evens [5] proved this for group
algebras, Friedlander and Suslin [6] for cocommutative Hopf algebras, Ginzburg
and Kumar [7] for small quantum groups, and there are some other known classes
of examples such as in [12]. Etingof and Ostrik [4] have conjectured that H∗(A, k)
is finitely generated for all finite dimensional Hopf algebras A.

Question. Is the converse of Corollary 3.10 true in general? It is known to be
true in many cases, including that of a finite group algebra.
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