Math 131 Lecture Notes
Section 2.7 – The Derivative as a Function

The derivative of a function f at a fixed number can be given as

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

and can be interpreted geometrically as the slope of the tangent line to graph of f at the point $(x, f(x))$. The domain of f' is the set \{x | $f'(x)$ exists\} and may be smaller than the domain of f.

Example: The graph of a function f is given below. Use it to sketch the graph of the derivative f'.

![Graph of $f(x)$]

Example: Let $P(t)$ be the population of a town during a boom and decline, given at time t. The table below gives midyear values of $P(t)$, in thousands, from 1990-2000. Construct a table of values for the derivative of this function.

<table>
<thead>
<tr>
<th>t</th>
<th>$P(t)$</th>
<th>$P'(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>
Example: Find the derivative of $f(x) = x^2 - x$.

Example: Find the derivative of $f(x) = \sqrt[3]{x}$. State the domain of f'.

Example: Find f' for $f(x) = \frac{x + 2}{1 - x}$.
Alternative notations for the derivative:

\[f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} \]

The symbols \(D \) and \(\frac{d}{dx} \) are called **differentiation operators** because they indicate the operation of **differentiation** or calculating a derivative.

To indicate the value of a derivative at a specific number \(a \), we can use the notation

\[\frac{dy}{dx}_{x=a} \quad \text{or} \quad \left. \frac{dy}{dx} \right|_{x=a} \]

A function \(f \) is **differentiable at \(a \)** if \(f'(a) \) exists. It is **differentiable on an open interval** \((a, b)\) [or \((a, \infty)\) or \((-\infty, a)\) or \((-\infty, \infty)\)] if it is differentiable at every number in the interval.

Example: Where is the function \(f(x) = |x| \) differentiable?

Theorem: If \(f \) is differentiable at \(a \), then \(f \) is continuous at \(a \).

Note: The converse of the theorem is **not** true.

The graphs below illustrate three possibilities for functions that are not differentiable at \(a \).

(a) A corner
(b) A discontinuity
(c) A vertical tangent
If \(f \) is a differentiable function, then its derivative \(f' \) is also a function, so \(f' \) may have a derivative, denoted by \(f'' \) and called the **second derivative** of \(f \).

Notation: \[
\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}
\]

Example: If \(f(x) = x^2 - x \), find and interpret \(f''(x) \).

If \(s = s(t) \) is the position function of an object that moves in a straight line, we know that its first derivative represents the velocity of \(v(t) \) of the object as a function of time:

\[
v(t) = s'(t) = \frac{ds}{dt}
\]

The instantaneous rate of change of velocity with respect to time is called the **acceleration** \(a(t) \) of the object. The acceleration function is the derivative of the velocity function, the second derivative of the position function:

\[
a(t) = v'(t) = s''(t) \quad \text{or} \quad a = \frac{dv}{dt} = \frac{d^2s}{dt^2}
\]

Example: A motorcycle starts from rest and the graph of its position function is shown below, where \(s \) is measured in feet and \(t \) in seconds. Use it to graph the velocity and acceleration of the car.

What is the acceleration at \(t = 3 \) seconds?
The third derivative \(f''' \) is the derivative of the second derivative: \(f''' = (f'')' \) and can be interpreted as the slope or rate of change of the curve \(y = f''(x) \).

\[
y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}
\]

Continuing the process, we have \(y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} \).

Example: If \(f(x) = x^2 - x \), find \(f'''(x) \) and \(f^{(4)}(x) \).

The third derivative of the position function is the derivative of the acceleration function and is called the **jerk**. It is the rate of change of acceleration; a large jerk means a sudden change in acceleration, which causes an abrupt movement in a vehicle.