Ideals and Varieties Exercises

Praise Adeyemo

June 15, 2017

Exercise 1. Let $\mathbb{A}_{K}^{n^{2}}$ be identified with the set of $M_{n \times n}$ matrices.

1. Show that the general linear group $G L_{n}(K) \subset \mathbb{A}_{K}^{n^{2}}$ of invertible matrices is not algebraic.
2. How can it be made algebraic?
3. Repeat both parts for the algebraic torus $\left(\mathbb{C}^{*}\right)^{n} \subset \mathbb{C}^{n}$.

Exercise 2. Let $f(x)=x^{4}+x^{3}-x^{2}+x-2$, and $g(x)=x^{3}+x^{2}+x+1$. Use the Sylvester matrix of f and g to investigate whether or not the polynomials share a common root in $\mathbb{Q}[x]$. Then, do this with the Euclidean algorithm.

Exercise 3. How would you describe lines in \mathbb{A}_{K}^{2} ? What is the algebraic interpretation of your description?

Exercise 4. A map $\phi: \mathbb{A}_{k}^{2} \rightarrow \mathbb{A}_{K}^{2}$ is an affine transformation if and only if there exists a vector $v \in \mathbb{K}^{2}$ and a matrix $A \in G L_{2}(K)$ such that $\phi(x)=A x+v$ for all $x \in \mathbb{A}_{K}^{2}$. Show that the set of all affine transformations, denoted by $\operatorname{Aff}\left(\mathbb{A}_{K}^{2}\right)$, forms a group.

Exercise 5. Show that the Zariski topology on \mathbb{A}_{k}^{n} is not Hausdorff when K is an infinite field. What happens when K is finite?

Exercise 6. The equation $x^{2}+y^{2}=z^{2}$ has many solutions over \mathbb{Z}. If (a, b, c) is a solution and $n \in \mathbb{N}$, then $(n \cdot a, n \cdot b, n \cdot c)$ is also a solution. Find infinitely many solutions where (a, b, c) have no common factor greater than 1.

Exercise 7. Show that $V\left(x+y, x^{2}\right)=V\left(x+y, y^{2}\right)$.
Exercise 8. Show that the set of matrices in $\mathbb{A}_{k}^{n^{2}}$ with a repeated eigenvalue is an algebraic set.

