ENUMERATIVE GEOMETRY OF PLANE CURVES

ERWAN BRUGALLÉ

Exercise 1. (a) Prove that a conic in $\mathbb{C} P^{2}$ having a singular point is the union of two lines.
(b) Prove that a cubic in $\mathbb{C} P^{2}$ having two singular points contains a line.
(c) Prove that a cubic in $\mathbb{C} P^{2}$ having three singular points is the union of three lines.

Exercise 2. We denote by $[x]$ the integer part of the number x. Deduce from Kontsevich formula that $2^{\left[\frac{d-1}{2}\right]}$ divides $N(d, 0)$.

Exercise 3 (Computation by hand of $N(3,0)$ and $W(3))$. We denote by Π_{3} the space of cubic curves in $\mathbb{C} P^{2}$, recall that this is a projective space of dimension 9. Let $\mathcal{P}=\left\{x_{1}, \ldots, x_{8}\right\}$ be a set of 8 points in general position in $\mathbb{C} P^{2}$, and let $\mathcal{L}_{\mathcal{P}} \subset \Pi_{3}$ be the set of all cubics containg the set \mathcal{P}.
(a) Show that $\mathcal{L}_{\mathcal{P}}$ is a line in Π_{3}. Deduce that there exists a point $x_{9} \in \mathbb{C} P^{2} \backslash \mathcal{P}$ such that x_{9} is contained in all cubics in $\mathcal{L}_{\mathcal{P}}$, and any two cubics in $\mathcal{L}_{\mathcal{P}}$ intersect exactly in x_{1}, \ldots, x_{9}.
(b) Let Σ be the blow-up of $\mathbb{C} P^{2}$ at the points x_{1}, \ldots, x_{9}. Prove that the Euler characteristic of Σ is 12 .
(c) Show that there exists a natural map $\Sigma \rightarrow \mathcal{L}_{p}$. Deduce that the Euler characteristic of Σ is $N(3,0)$.
(d) Adapt this computation in the real case to find $W(3)=8$.
(e) Prove that there exists a configuration \mathcal{P} such that all the 12 rational cubics that contain \mathcal{P} are real.

Exercise 4 (Compare with Exercise 1). A crossing point of a tropical curve C in \mathbb{R}^{2} is a vertex of C whose dual polygon is a parallelogram.
(a) Prove that a tropical conic in \mathbb{R}^{2} having crossing point is the union of two tropical lines.
(b) Prove that a tropical cubic in \mathbb{R}^{2} having two crossing points contains a tropical line.
(c) Prove that a tropical cubic in \mathbb{R}^{2} having three crossing points is the union of three tropical lines.

Exercise 5. Show that either 9 or 10 distinct rational tropical cubics pass through a given generic configuration of 8 points in \mathbb{R}^{2}.

Exercise 6. Prove that

$$
N(d, 0)=W(d) \quad \bmod 4 \quad \forall d \geq 1 .
$$

Exercise 7. Using Figures 1, 2 and 3, compute

$$
N(4,3)=1, \quad N(4,2)=27, \quad N(4,1)=225, \quad N(4,0)=620, \quad \text { and } \quad W(4)=240 .
$$

[^0]

Figure 1. Floor diagrams of degree 4 and genus 3 or 2

Figure 2. Floor diagrams of degree 4 and genus 1
Exercise 8. Using floor diagrams, prove that

$$
N\left(d, \frac{(d-1)(d-2)}{2}-1\right)=3(d-1)^{2},
$$

and that

$$
N\left(d, \frac{(d-1)(d-2)}{2}-2\right)=\frac{3}{2}(d-1)(d-2)\left(3 d^{2}-3 d-11\right) .
$$

Exercise 9 (Compare with Exercise 7). Compute

$$
\begin{gathered}
G_{4,2}=3 q^{-1}+21+3 q, \\
G_{4,1}=3 q^{-2}+33 q^{-1}+153+33 q+3 q^{2} \\
G_{4,0}=q^{-3}+13 q^{-2}+94 q^{-1}+404+94 q+13 q^{2}+q^{3} .
\end{gathered}
$$

Exercise 10 (Compare with Exercise 8). Prove that

$$
G_{d, \frac{(d-1)(d-2)}{2}}=1 \quad \text { and } \quad G_{d, \frac{(d-1)(d-2)}{2}-1}=(d-1) \cdot\left(\frac{d-2}{2} \cdot q^{-1}+2 d-1+\frac{d-2}{2} \cdot q\right) .
$$

Figure 3. Floor diagrams of degree 4 and genus 0
Exercise 11. Fix a positive integer d and an integer $0 \leq g \leq \frac{(d-1)(d-2)}{2}$. Prove that the highest power of q which appears in $G_{d, g}$ is $\frac{(d-1)(d-2)}{2}-g$, and that the coefficient of the corresponding monomial of $G_{d, g}$ is equal to

$$
\binom{\frac{(d-1)(d-2)}{2}}{g}
$$

Exercise 12. Fix a non-negative integer g and a positive integer k. Show that for any sufficiently large integer d and any generic collection \mathcal{P} of $3 d-1+g$ points in \mathbb{R}^{2}, there exists an irreducible tropical curve C of degree d and genus g in \mathbb{R}^{2} such that C passes through the points of \mathcal{P}, and has a complex multiplicity greater than k.

Erwan Brugallé, CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France

E-mail address: erwan.brugalle@math.cnrs.fr

[^0]: Date: May 29, 2017.

