Problems on Sums of Squares and Positive Polynomials I

(1) Suppose $f, g_{1}, \ldots, g_{k} \in \mathbb{R}[X]$ and $f=g_{1}^{2}+\ldots g_{k}^{2}$. Show that $\operatorname{deg} f=2 \max \left\{\operatorname{deg} g_{i}\right\}$. Show that if f is homogeneous of degree $2 d$, then each g_{i} is homogeneous of degree d.
(2) Write $t^{6}+2 t^{5}-t^{4}-2 t^{2}-8 t+8$ as a sum of two squares in $\mathbb{R}[t]$.
(3) Prove that $X^{2} Y^{2}+X^{2} Z^{2}+Y^{2} Z^{2}-4 X Y Z+1$ is psd and not sos.
(4) Let $\mathbb{R}[t]$ denote the polynomial ring over \mathbb{R} in one variable and consider $S\left(t^{3}\right)=$ $[0, \infty)$ and $P=P\left(t^{3}\right)$. Prove that for $f \in \mathbb{R}[t], f \geq 0$ does not always imply $f \in P$. Hint: Consider $1+t \in \mathbb{R}[t]$ and assume that a representation exists. Now check the degrees of each side of the equation you wrote down.
(5) Let $f=X_{1} X_{3}^{3}+X_{2} X_{3}^{3}+X_{1}^{2} X_{2}^{2}-X_{1} X_{2} X_{3}^{2}$ and $g=X_{1}^{2} X_{2}+X_{2}^{2} X_{3}+X_{3}^{2} X_{1}-$ $X_{1} X_{2} X_{3}$.
(a) Show that $f, g \geq 0$ on Δ_{3} with zeros only at the vertices.
(b) Use computer algebra software to show that g satisfies the conclusion of Pólya's Theorem (with "strictly positive coefficents" replaced by "nonnegative coefficients").
(c) Prove that for any $N \in \mathbb{N},\left(X_{1}+X_{2}+X_{3}\right)^{N} f$ has negative coefficients. Hint: Consider the coefficient of $X_{1}^{n} X_{2} X_{3}^{2}$.

