Problems on Sums of Squares and Positive Polynomials I

- (1) Suppose $f, g_1, \ldots, g_k \in \mathbb{R}[X]$ and $f = g_1^2 + \ldots g_k^2$. Show that deg $f = 2 \max\{\deg g_i\}$. Show that if f is homogeneous of degree 2d, then each g_i is homogeneous of degree d.
- (2) Write $t^6 + 2t^5 t^4 2t^2 8t + 8$ as a sum of two squares in $\mathbb{R}[t]$.
- (3) Prove that $X^2Y^2 + X^2Z^2 + Y^2Z^2 4XYZ + 1$ is psd and not sos.
- (4) Let $\mathbb{R}[t]$ denote the polynomial ring over \mathbb{R} in one variable and consider $S(t^3) = [0, \infty)$ and $P = P(t^3)$. Prove that for $f \in \mathbb{R}[t]$, $f \ge 0$ does not always imply $f \in P$. Hint: Consider $1 + t \in \mathbb{R}[t]$ and assume that a representation exists. Now check the degrees of each side of the equation you wrote down.
- (5) Let $f = X_1 X_3^3 + X_2 X_3^3 + X_1^2 X_2^2 X_1 X_2 X_3^2$ and $g = X_1^2 X_2 + X_2^2 X_3 + X_3^2 X_1 X_1 X_2 X_3$.
 - (a) Show that $f, g \ge 0$ on Δ_3 with zeros only at the vertices.
 - (b) Use computer algebra software to show that g satisfies the conclusion of Pólya's Theorem (with "strictly positive coefficients" replaced by "nonnegative coefficients").
 - (c) Prove that for any $N \in \mathbb{N}$, $(X_1 + X_2 + X_3)^N f$ has negative coefficients. Hint: Consider the coefficient of $X_1^n X_2 X_3^2$.