TROPICAL GEOMETRY EXERCISES CIMPA SCHOOL - UNIVERSITY OF IBADAN, JUNE 2017

KRISTIN SHAW

1. Tropical arithmetic and polynomials

Exercise 1.1. Show that

$$
"(x+0)^{k} "=" x^{k}+0 "
$$

as functions. Remember that " a " $=" a \cdots \cdots "=k a$ for $a \in \mathbb{T}$.
Exercise 1.2. Draw the graphs of the tropical polynomials $P(x)=" x^{3}+2 x^{2}+3 x+(-1)$ " and $Q(x)=" x^{3}+(-2) x^{2}+2 x+(-1) "$, and determine their tropical roots.
Exercise 1.3. Let $a \in \mathbb{R}$ and $b, c \in \mathbb{T}$. Determine the roots of the polynomial " $a x^{2}+b x+c$ ". What is the tropical discriminant?

Exercise 1.4. Prove that x_{0} is a tropical root of order at least k of $P(x)$ if and only if there exists a tropical polynomial $Q(x)$ such that $P(x)="\left(x+x_{0}\right)^{k} Q(x)$ ".
Exercise 1.5. Prove that the tropical semi-field is algebraically closed. In other words that a tropical polynomial function of degree d has exactly d roots counted with multiplicity.

Exercise 1.6. Prove that there is no way to enlarge the tropical numbers $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ to include additive inverses. Hint " $a+a$ " $=a$ for all $a \in \mathbb{T}$.

Exercise 1.7 (Maslov dequantisation). Let $\mathbb{R}_{>0}$ denote the non-negative real numbers and $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$. Notice that $\log _{t}\left(\mathbb{R}_{\geq 0}\right)=\mathbb{T}$. Consider the semi-field $\left(\mathbb{T},+_{t}, \times_{t}\right)$ where

$$
x+_{t} y:=\log _{t}\left(t^{x}+t^{y}\right) \quad \text { and } \quad x \times_{t} y:=\log _{t}\left(t^{x} t^{y}\right)
$$

(1) Show that for all $t>1$ the semi-field $\left(\mathbb{T},{ }_{t}, \times_{t}\right)$ is isomorphic to the semi-field $\left(\mathbb{R}_{\geq 0},+, \times\right)$ equipped with the usual sum and multiplication
(2) Show that as t tends to ∞ the semi-field $\left(\mathbb{T},+_{t}, \times_{t}\right)$ converges to a semi-field isomorphic the tropical semi-field ($\mathbb{T}, \max ,+$).

2. Tropical curves in the plane

Exercise 2.1. Draw the tropical curves defined by the tropical polynomials

$$
" y+x^{3}+2 x^{2}+3 x+(-1) "
$$

and

$$
" 7+4 x+y+4 x y+3 y^{2}+(-3) x^{2} ",
$$

as well as their dual subdivisions. Compare the 1st curve with the graph of $P(x)$ from Exercise 1.2.

Exercise 2.2. Prove the balancing property at a vertex of a tropical curve using the dual subdivision.

Exercise 2.3. A tropical curve C is called nodal if its dual subdivision consists of triangles and parallelograms. The genus of a nodal tropical curve of degree with Newton polygon Δ is

$$
g(C)=\frac{\sigma-\left|\partial \Delta \cap \mathbb{Z}^{2}\right|+2}{2},
$$

where σ is equal to the number of triangles in the subdivision of Δ dual to C. A tropical curve is of degree d if its Newton polygon has vertices $(0,0),(d, 0),(0, d)$.
(1) Show that a tropical curve of degree d has at most d^{2} vertices.
(2) What is the genus of a non-singular tropical curve of degree d ?

Exercise 2.4. Determine the stable intersection points of the following 3 pairs of tropical curves.

a)

b)

c)

Exercise 2.5. What is the self-intersection number of a tropical curve in \mathbb{R}^{2} with Newton polygon Δ ?
Exercise 2.6 (Tropical Bézout's Theorem). Prove that if C_{1} and C_{2} are tropical curves in \mathbb{R}^{2} of degrees d_{1} and d_{2}, respectively, then the intersection number of C_{1} and C_{2} is $d_{1} d_{2}$.
Exercise 2.7. Pick's formula for a lattice polygon Δ in \mathbb{R}^{2} states that:

$$
2 \operatorname{Area}(\Delta)=2\left|\operatorname{Int}(\Delta) \cap \mathbb{Z}^{2}\right|+|\partial \Delta \cap \mathbb{Z}|-2
$$

(1) Prove Pick's formula assuming that you have a primitive triangulation of Δ.
(2) Rewrite Pick's formula in terms of the genus, the self-intersection number, and the number of unbounded edges of non-singular tropical curve with Newton polygon Δ.

Exercise 2.8. Prove that every rational weighted 1-dimensional polyhedral complex in \mathbb{R}^{2} which satisfies the balancing condition is the tropical curve of a tropical polynomial in 2 variables. Hint: Start by writing down the tropical polynomial when the polyhedral complex has a single vertex.

