Exercises from Sottile's Lectures

Exercises I.

- 1. Use the embedding $x \mapsto (x, x^{-1})$ of the torus \mathbb{C}^* into \mathbb{C}^2 , or any other method, to show that the coordinate ring of the torus \mathbb{C}^* may be identified with $\mathbb{C}[x, x^{-1}]$. Deduce that the coordinate ring of $(\mathbb{C}^*)^n$ may be identified with $\mathbb{C}[x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}]$. Show that this is the complex group ring $\mathbb{C}[M]$ of the free abelian group of characters $M = \mathbb{Z}^n$ of the torus $(\mathbb{C}^*)^n$. Can you relate the structure of $\mathbb{C}[M]$ to the group structure on $(\mathbb{C}^*)^n$?
- 2. Show that the monomial map $\varphi_{\mathcal{A}} : (\mathbb{C}^*)^n \to (\mathbb{C}^*)^{\mathcal{A}}$ is injective if and only if \mathcal{A} generates M. When \mathcal{A} does not generate M, identify the kernel of $\varphi_{\mathcal{A}}$.
- 3. Let $\mathcal{A} \subset \mathbb{Z}^6 = (Z^2)^3$ be the columns of the 6×8 matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

What is $X_{\mathcal{A}}$ and $I_{\mathcal{A}}$? (Describe $X_{\mathcal{A}}$ and give a Grobner basis for $I_{\mathcal{A}}$.) Hint: The even (respectively odd) numbered rows give the vertices of the 3-cube.

4. Show that the collection of 2×2 minors of the $k \times m$ matrix $(z_{ij})_{i=1,\dots,k}^{j=1,\dots,m}$ of indeterminates forms a reduced Gröbner basis for the toric ideal of the variety $X_{\mathcal{A}}$ of matrices of rank 1, where where the term order is degree reverse lexicographic with the variables ordered by $z_{a,b} \prec z_{c,d}$ if a < c or a = c and b > d.

What about a reduced Gröbner basis in other term orders?

5. Identify a generating set and a reduced Gröbner basis for the toric ideal $I_{\mathcal{A}}$ given by as many of the following subsets of \mathbb{Z}^2 as you can.

Are toric ideals always generated by quadratic polynomials?

- 6. Work out the details of the suggested proof of Theorem 1.4 (From Sottile's Notes). Explain why 'reduced' is necessary for the conclusion.
- 7. Let S be a finitely generated subsemigroup of M. Show that every maximal ideal \mathfrak{m} of $\mathbb{C}[S]$ restricts to a semigroup homomorphism from S to \mathbb{C} , and vice-versa. Hint: use that maximal ideals correspond to algebra maps $\mathbb{C}[S] \to \mathbb{C}$.
- 8. For $\mathcal{A} \subset M$ finite, show that $X_{\mathcal{A}}(\mathbb{R}) = \operatorname{Hom}_{sg}(\mathbb{N}\mathcal{A}, \mathbb{R})$ and $X_{\mathcal{A},\geq} = \operatorname{Hom}_{sg}(\mathbb{N}\mathcal{A}, \mathbb{R}_{\geq})$.

Exercises II.

- 1. Prove that if a finite set $\mathcal{A} \subset \mathbb{Z}^n$ is homogeneous with $\operatorname{rank}(\mathbb{Z}\mathcal{A}) = 1 + m$, then there is a basis for $\mathbb{Z}\mathcal{A}$ identifying it with \mathbb{Z}^{1+m} and a subset $\mathcal{B} \subset \mathbb{Z}^m$ such that $\mathcal{A} = \mathcal{B}^+$.
- 2. Suppose that $\mathcal{A} \subset \mathbb{Z}^{1+n}$ is the set of column vectors of an integer matrix. Show that \mathcal{A} is homogeneous if and only if its row space in $\mathbb{Q}^{\mathcal{A}}$ has a vector with every coordinate 1.
- 3. Give a spanning set of degree two generators for $I_{\mathcal{A}}$, where \mathcal{A} is the lifted hexagon.

Interpret each generator as a point common to the convex hulls of two disjoint subsets of \mathcal{A} .

- 4. Let $\mathcal{A} \subset \mathbb{Z}^n$. Show that the map $\varphi_{\mathcal{A}} \colon (\mathbb{C}^*)^n \to \mathbb{P}^{\mathcal{A}}$ is injective if and only if the integral affine span of \mathcal{A} is \mathbb{Z}^n .
- 5. Prove the equivalence of the two definitions (2.3) and (2.3) of affine span.
- 6. Show that the Euclidean volume of the simplex conv $\{0, e_1, \ldots, e_n\}$ is $\frac{1}{n!}$, where e_i is the standard coordinate unit vector in \mathbb{R}^n . Harder: Prove that this is the minimum volume of any lattice simplex, and that all others have volume an integer multiple of $\frac{1}{n!}$.