Tensors: From Data to Statistics First Session with Bernd Sturmfels at Ibadan

Every participant is asked to answer the following three binary questions: Are you from Ibadan or from elsewhere? Are you male or female? Do you wear glasses or not?

The responses will be summarized in a table of format $2 \times 2 \times 2$, to be called the *Ibadan tensor*:

 $u = \left(\begin{pmatrix} u_{000} & u_{001} \\ u_{010} & u_{011} \end{pmatrix}, \begin{pmatrix} u_{100} & u_{101} \\ u_{110} & u_{111} \end{pmatrix} \right)$

Question 1: A tensor *p* is called *independent* (or *rank one*) if its entries can be written in the form $p_{ijk} = a_i b_j c_k$. Show that the independent $2 \times 2 \times 2$ -tensors form an irreducible algebraic variety \mathscr{I} .

Question 2: Compute a minimal generating set for the prime ideal of the variety \mathcal{I} .

Question 3: Evaluate each ideal generator at the Ibadan tensor *u*, and record the sign (positive, zero, or negative). What does this sign mean in statistics? (Hint: conditional independence)

Question 4: Fix a term order that refines the weights given by the Ibadan tensor *u*. Compute the reduced Gröbner bases for this ideal, and find all minimal primes of the initial monomial ideal.

Question 5: How many triangulations does the 3-dimensional cube have? Is this related to \mathscr{I} ?

Question 6: Find a tensor in \mathscr{I} that minimizes the Euclidean distance to the Ibadan tensor u. Is that tensor unique? Does it have nonnegative entries? If not, find a closest nonnegative tensor.

Question 7: Find a nonnegative tensor in \mathscr{I} that minimizes the likelihood function $\prod p_{ijk}^{u_{ijk}}$.

Question 8: Compare your answers for #6 and #7. Find and interpret $(a_0, a_1), (b_0, b_1), (c_0, c_1)$.

Question 9: Design a hypothesis test for independence and apply it to the Ibadan tensor *u*.