Tensors: Eigenvectors Third Session with Bernd Sturmfels at Ibadan

A *d*-dimensional tensor *F* of format $n \times n \times \cdots \times n$ can be written as a list of *n* tensors of dimension d-1 and format $n \times \cdots \times n$, each obtained by fixing the first index. The symmetrization of each of these *n* tensors is a homogeneous polynomial f_i of degree d-1 in *n* variables. The list of polynomials $f = (f_1, \ldots, f_n)$ defines a polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$. A vector $v \in \mathbb{C}^n$ is an *eigenvector* of the tensor *F* if $f(v) = \lambda \cdot v$ for some $\lambda \in \mathbb{C}$. We refer to a point $v \in \mathbb{P}^{n-1}$ as an *eigenvector* of *F* if it is a fixed point or a base point of the induced rational map $f : \mathbb{P}^{n-1} \to \mathbb{P}^{n-1}$.

Question 1: Compute the eigenvectors of the Ibadan tensor. Repeat after permuting coordinates.

Question 2: Each symmetric tensor is identified with a homogeneous polynomial g of degree d in n variables. Its gradient ∇g is the vector of partial derivatives. Show that the eigenvectors of g are the fixed points or base points the gradient map $\nabla g : \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$. What are the base points ?

Question 3: Write the cubic $g = x^3 + y^3 + z^3$ as a tensor. Compute its eigenvectors in \mathbb{P}^2 .

Question 4: Write the quartic g = xyz(x+y+z) as a tensor. Compute its eigenvectors in \mathbb{P}^2 .

Question 5: Are all configurations of 13 points in \mathbb{P}^2 the eigenvectors of some (symmetric) tensor?

Question 6: How to maximize or minimize a function on the unit sphere $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$? Compute all local minima and local maxima on \mathbb{S}^2 of the functions in # 3, # 4.

Question 7: Compute all eigenvectors in \mathbb{P}^3 of the quartic $g = x^4 + y^4 + z^4 + w^4$.

Question 8: Compute all eigenvectors in \mathbb{P}^3 of the quintic g = xyzw(x + y + z + w).

Question 9: What is the maximal number of isolated **real** eigenvectors for a symmetric tensor? Answer this question for all values of d and n that were encountered in the examples above.