Tensors: Eigenvectors Third Session with Bernd Sturmfels at Ibadan

A d-dimensional tensor F of format $n \times n \times \cdots \times n$ can be written as a list of n tensors of dimension $d-1$ and format $n \times \cdots \times n$, each obtained by fixing the first index. The symmetrization of each of these n tensors is a homogeneous polynomial f_{i} of degree $d-1$ in n variables. The list of polynomials $f=\left(f_{1}, \ldots, f_{n}\right)$ defines a polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. A vector $v \in \mathbb{C}^{n}$ is an eigenvector of the tensor F if $f(v)=\lambda \cdot v$ for some $\lambda \in \mathbb{C}$. We refer to a point $v \in \mathbb{P}^{n-1}$ as an eigenvector of F if it is a fixed point or a base point of the induced rational map $f: \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$.

Question 1: Compute the eigenvectors of the Ibadan tensor. Repeat after permuting coordinates.

Question 2: Each symmetric tensor is identified with a homogeneous polynomial g of degree d in n variables. Its gradient ∇g is the vector of partial derivatives. Show that the eigenvectors of g are the fixed points or base points the gradient map $\nabla g: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$. What are the base points?

Question 3: Write the cubic $g=x^{3}+y^{3}+z^{3}$ as a tensor. Compute its eigenvectors in \mathbb{P}^{2}.

Question 4: Write the quartic $g=x y z(x+y+z)$ as a tensor. Compute its eigenvectors in \mathbb{P}^{2}.

Question 5: Are all configurations of 13 points in \mathbb{P}^{2} the eigenvectors of some (symmetric) tensor?

Question 6: How to maximize or minimize a function on the unit sphere $\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+y^{2}+z^{2}=1\right\}$? Compute all local minima and local maxima on \mathbb{S}^{2} of the functions in \# 3, \# 4 .

Question 7: Compute all eigenvectors in \mathbb{P}^{3} of the quartic $g=x^{4}+y^{4}+z^{4}+w^{4}$.
Question 8: Compute all eigenvectors in \mathbb{P}^{3} of the quintic $g=x y z w(x+y+z+w)$.

Question 9: What is the maximal number of isolated real eigenvectors for a symmetric tensor? Answer this question for all values of d and n that were encountered in the examples above.

